
~~FL GIR.,

I-

i,

1 0<''' 1 Di

0A NEURAL NETWORKX IMPLEMENTATION OF 4 DTIC
Ah .LECTE

CHAOTIC TIME SERIES PREDICTION JANi 81983

THESIS

James R. Stright
Captain, USAF

AFIT/GE/ENG/88D-90

]DIStRIUTION 6STAjTE.MEN A
Approved fCo public releasel

I Dis~ibiution Unlimited

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

p1 AIR FORCE INSTITUTE OF TECHNOLOGY

I,; Wright-Patterson Air Force Base, Ohio

-9' - '17 29

3 AFIT/GE/ENG/88D-50

DTIC
SELEC-i r~t

Dc >

A NEURAL NETWORK IMPLEMENTATION OF

CHAOTIC TIME SERIES PREDICTION

M
THESIS

James R. Stright
Captain, USAF

AFIT/GE/ENG/8 8D-SO0

Approved for public release; distribution unlimited

AFIT/GE/ENG/88D-50

S

A NEURAL NETWORK IMPLEMENTATION OF

CHAOTIC TIME SERIES PREDICTION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering Accesoi For
NTIS Cf-"i %
DTIC ;,'-i[

James R. Stright, B.E.E.

Captain, USAF

December 1988 ,... Dist

Approved for public release; distribution unlimited

! ,

.. - 7 --S

Acknowledgments

I could not have produced this thesis without the

assistance of many people. I am particularly indebted to

Dr. Steven K. Rogers, my thesis advisor, who suggested the

thesis topic in the first place and thereafter guided me

with wisdom and patience along this very new avenue of

neural network research. Dr. Dennis Quinn provided several

invaluable suggestions at crucial points in my labors. Dr.

David Umphress assisted me with the object-oriented design

of my predictor network. My fellow students Charles Piazza,

Mike Roggemann, Dennis Ruck, and Swen Walker contributed

more to my growth as a neural net researcher than any linear

combination of sigmoids can express. Thanks, guys.

Finally, the biggest thanks goes to the shortest person, but

the one who has borne the heaviest part of this load, my

wife Linda.

I
James R. Stright

* ii

Table of Contents

Page

Acknowledgments.. ii

List of Figures... v

List of Tables... vii

Abstract.. viii

1. Introduction.. 1-1

1.1 Historical Background.............................. 1-2
1.2 Problem Statement and Scope........................1-3
1.3 General Approach................................... 1-3
1.4 Thesis Organization................................ 1-4

r 2. Background Material.................................. 2-1

2.1 Introduction....................................... 2-1

2.2 The Glass-Mackey Equation..........................2-1

*2.2.1 General Information............................. 2-1
2.2.2 The Equation and a Typical Representation 2-2

2.3 Chaos and Fractal Dimension........................2-4

2.4 An Artificial Neural Network.......................2-6

2.5 Presentation of Time Series Data to Network........2-11

2.6 Summary... 2-13

3. Chaotic Time Series and a Predictor Network..........3-1

3.1 Introduction....................................... 3-1

3.2 Some Approaches to Solving the Glass-Mackey Eqn 3-2

3.3 Fractal Dimension of Time Series Data..............3-6

3.4 Building a Predictor Network.......................3-11

3.4.1 Batch Processing with a Degenerate Network ... 3-11
3.4.2 A Geometric Interpretation of

Time Series Learning............................3-24
3.4.3 An Object-Oriented Design Predictor 'Network .. 3-33

3.5 Summary... 3-36

Ka1l; t

4. Results and Discussion............................... 4-1

34.1 Introduction....................................... 4-1

4.2 Sine Wave Results.................................. 4-1

4.3 Incommensurate Sine Waves..........................4-7

4.4 Glass-Mackey Prediction............................ 4-8

4.5 Summary... 4-10

5. Conclusions and Recommendations......................5-1

5.1 Conclusions....................................... 5-1

*-5.2 Recommendations.................................... 5-2

Appendix A: Glass-Mackey Computational Details..........A-1

Appendix B: The QSD Algorithm...........................B-1

Appendix C: Ada Source Code............................. C-1

Appendix D: Additional Error Surface Descents...........D-1

3Bibliography.. BIB-l
Vita.. VIT-1

-I iv

List of Figures

Figure Page

2.1 A Chaotic Function x(t) 2-3

2.2 Schematic of a Typical Three Layer Network 2-7

2.3 A Single Neuron 2-8

2.4 The Sigmoid Function f(Z) 2-9

2.5 A Triangle Discriminator Network 2-10

2.6 Plane Region Requiring a Three Layer Network ... 2-11

2.7 Time Series Training and Prediction 2-12

3.1 Comparison of Glass-Mackey Solution Methods 3-3

3.2 Glass-Mackey Solutions with At = 1 3-6

3.3 Glass-Mackey Solutions with At = 0.1 3-6

3.4 Counting Close k-tuples (k = 3) 3-8

3.5 Estimating Fractal Dimension as Linear Slope ... 3-10

3.6 A Sum of Sine Waves 3-11

3.7 Input Plane of a Single Neuron Network 3-12

3.8 Steepest Descent Minimization 3-15

3.9 Cross Sections Containing So and S, 3-16

3.10 A Simple Error Surface 3-19

3.11 Contour Plot Demonstrating QSD Algorithm 3-19

3.12 Single-Step, Input-by-Input Weight Updating 3-21

3.13 Input-by-Input Application of QSD 3-22

3.14 Single-Step Batch Processing 3-23

3.15 A Simple Time Series 3-25

3.16 Mapping Sequence Pairs to Next Sequence Value .. 3-26

3.17 A Simple Predictor Network 3-26

v

3.18 Another Time Series 3-29

3.19 Parallel Projections in Two-space 3-30

3.20 A Three Input Predictor Network 3-31

3.21 Booch Diagram of OOD Predictor Network 3-35

4.1 Two Input Sine Wave Prediction 4-3

4.2 Three Input Sine Wave Prediction 4-5

4.3 Incommensurate Sines Prediction 4-8

4.4 Glass-Mackey Prediction 4-10

B.1 Error Surface Contours B-i

B.2 When a Quadratic Approximation Minimizes E B-3

B.3 When a Quadratic Approximation Maximizes E B-6

D.1 QSD Algorithm from (4,-4) D-2

D.2 Single-Step, Input-by-Input Updating from (4,-4) D-2

n D.3 Input-by-Input Application of QSD from (4,-4) D-3

D.4 Single-Step Batch Processing from (4,-4) D-3

D.5 QSD Algorithm from (6,-8) D-4

* D.6 Single-Step, Input-by-Input Updating from (6,-8) D-4

D.7 Input-by-Input Application of QSD from (6,-8) .. D-5

D.8 Single-Step Batch Processing from (6,-8) D-5

vi

List of Tables

3 Table Page

4.1 Two Input Sine Wave Prediction 4-2

4.2 Three Input Sine Wave Prediction 4-5

4.3 Incommensurate Sines Prediction 4-8

4.4 Glass-Mackey Prediction 4-9

vii

vii

AFIT/GE/ENG/88D-50

Abstract

This thesis provides a description of how a neural

network can be trained to tlearnZthe order inherent in

chaotic time series data and then use that knowledge to

predict future time series values. It examines the meaning

of chaotic time series data, and explores in detail the

Glass-Mackey nonlinear differential delay equation as a

typical source of such data. An efficient weight update

algorithm is derived, and its two-dimensional performance is

examined graphically. A predictor network which

incorporates this algorithm is constructed and used to

* mpredict chaotic data.
The network was able to predict chaotic data. Prediction

was more accurate for data having a low fractal dimension

L than for high-dimensional data. Lengthy computer run times

were found essential for adequate network training.-q
4o

/ ,

;
._

viii

N A NEURAL NETWORK IMPLEMENTATION

OF CHAOTIC TIME SERIES PREDICTION

1. Introduction

Accurate prediction of the behavior of complex nonlinear

systems has long eluded practitioners of almost every

imaginable scientific discipline. Meteorologists have

employed models of earth's atmosphere using systems of

twelve or more partial differential equations in attempts to

predict the weather (Gleick87:19]. Economists have long

studied graphs of market trends and Dow Jones averages in

attempts to predict market behavior [Gleick87:85].

Physicists have used the world's fastest supercomputers on

the nonlinear equations of fluid motion in attempts to track

the turbulent flow of a fluid accurately [Gleick87:137].

Such attempts have usually been empirically unsatisfactory,

and they have often left scientists with the nagging

suspicion that some underlying principle of nonlinear

dynamics was eluding them. Addressing the problem of

turbulent fluid flow, the quantum theorist Richard P.

Feynman noted that it always bothered him that "according to

the laws as we understand them today, it takes a computing

machine an infinite number of logical operations to figure

out what goes on in no matter how tiny a region of space,

and no matter how tiny a region of time. How can all that

1-1

be going on in that tiny space? Why should it take an

* infinite amount of logic to figure out what one tiny piece

of space/time is going to do? (Feynman65:57]"

1.1. Historical Background

In the past twenty years or so, with insight gained from

computer graphics, a new science dubbed Chaos has emerged

and has shown considerable promise in explaining complex

nonlinear phenomena such as fluid turbulence [Gleick87:202-

207). Although "chaos" has a technical definition, in an

intuitive sense, a system is chaotic if it is deterministic

but "random" in a manner similar to deterministic pseudo

random number generators used on many digital computers

[Lapedes88a:l]. Chaos theory tends to discount the long-

held assumption that systems which are "visibly unstable,

unpredictable, or out of control must either be governed by

a multitude of independent components or subject to random

external influences. [Gleick87:303]" In chaos theory, the

physical source of random-appearing time series data is of

little interest for purposes of extending the time series

into the future. Instead, chaos predicts future values

using only knowledge of the existing data, and a property of

the data known as its fractal dimension [Lapedes88a:7].

Fractal dimension may be regarded as a yardstick for

measuring along the continuum of order and randomness

inherent in dynamical aystems (and in time series data,

too). Systems with high fractal dimension are highly random

1-2

and, from a practical point of view, unpredictable. Systems

with low fractal dimension may contain enough order to be

predictable [Farmer88:6].

Alan Lapedes and Robert Farber, working at Los Alamos

National Laboratory, described their use of a neural network

to achieve accurate prediction of a chaotic time series

[Lapedes88a].

Neural networks are computational models consisting of

one or (usually) more inputs, one or (usually) more

interconnected processing elements called neurons, and one

or more outputs. They will be discussed more fully in

Section 2.4.

This thesis will examine in greater depth the work of

i iLapedes and Farber, and endeavor to impart a feeling for

how a neural network is able to predict.

1.2 Problem Statement and Scope

9 The general problem of interest is: can a neural network

"learn" the underlying order within chaotic time series data

and use it to predict future values of the time series

accurately? To this end, a suitable batch-processing neural

network is constructed and trained to predict chaotic time

series data.

1.3 General Approach

Most of the neural networks constructed at AFIT have been

used for classification or pattern recognition purposes

(see, for example, [Ruck87]). Such networks are said to

1-3

employ "value unit coding" because only the relative values

i from the output nodes are of interest (for example, select

the node with the highest value). On the other hand, the

numerical value of the output of a predictor network is of

direct interest. Such networks are said to employ "variable

unit coding". It was felt that this rather unique

application warranted development of a unique network, so

considerable attention was given to network training

algorithms as a prelude to construction of a predictor

network.

v Neural networks may use any of several algorithms to

update the weights and thresholds which they apply to input

data. Dahl[87:7] suggests a quadratic method which is

* elaborated in this thesis, then incorporated into a three

layer neural network having only a single output node.

Various time series (from simple to complex) are described

M in terms of the continuous functions from which they are

taken. The neural network is trained on early portions of

the time series data, then allowed to iterate beyond the

time values on which it was trained. The output values are

then compared to the known values of the time series to

determine the accuracy of the neural network as a predictor.

1.4 Thesis Organization

This chapter has provided a brief historical perspective

on chaos, a statement of the goal of this research effort,

and an outline of the approach used to perform chaotic time

1-4

series prediction. The next chapter will review background

fmaterial essential to understanding the chaotic time series
and the neural network which will be developed in Chapter

*Three. In Chapter Four, the results of applying time series

data to the network will be discussed. Chapter Five will

present conclusions and recommendations.

1

I

U

2. Background Material

2.1 Introduction

In the last chapter, a brief historical background of the

problem of chaotic time series prediction was presented, as

- well as a statement of the problem to be solved. This

chapter will present background material needed to

understand the algorithms which will be developed in Chapter

Three and tested in Chapter Four. The following topics will

be covered in this chapter: 1) the Glass-Mackey equation, a

nonlinear differential delay equation which will be used to

represent a deterministically chaotic time series, 2) the

concept of fractal dimension as applied to time series data,

3) the architecture and operation of a multilayer perceptron

neural network which uses a batch-processing training

algorithm, and 4) the iterative method of presenting time

series data to the neural network.

2.2 The Glass-Mackey Equation

In this section, the general form of a carefully studied

(Farmer82] difference equation is presented, and its chaotic

nature is explained.

2.2.1 General Information. A difference equation with a

single independent variable, time, specifies the sense in

which a dependent variable changes with respect to time at

discrete time intervals. A differential equation specifies

the sense in which a dependent variable changes continuously

with time. Functions described by equations containing both

2-1

difference and differential components can appear, when

graphed, continuous but only quasi-periodic. Researchers at

McGill University in Montreal (Mackey77] found that blood

production in the body varies both continuously and

- discretely with time, there being a discrete time lag

between the body's request for more blood and the actual

increase in blood production. The name of the Glass-Mackey

equation which describes blood production pays tribute to

their work.

2.2.2 The Equation and a Typical Representation. In

addition to having both differential and delay components,

the Glass-Mackey equation is highly nonlinear, having an x11

term in the denominator:

I
dx(t) a x(t-r)

= - b x(t) (2.1)
dt 1 + X10 (t-r)

* In this equation, x is the function of interest, dependent

on the continuous variable time, t. The coefficients a and

b are constants, as is the time delay r days.

Like all differential and difference equations, this one

can only be solved with the knowledge of initial conditions

which x(t) satisfies. One way to meet this requirement is

to assume that x(t) is known for all times between 0 and r.

In this thesis, it is assumed (for computational ease) that

x(t) is constant on the interv-1 [0,r]. Because the

function value is specified at an infinite number of points

L i 2-2

in [0,,], x(t) satisfies in a sense an infinite number of

initial conditions.

Following Lapedes, the values of the constants a, b, and

r are taken to be 0.2, 0.1, and 30, respectively

[Lapedes88a:5]. Lapedes does not specify the constant he

uses to define the initial portion of x(t). If this

constant is one, then numerical solution techniques yield

the uninteresting function x(t) = 1 for all t (see, for

example, Equation (3.2)). Therefore, the constant value two

was chosen for x(t) over the interval [0,r)]. With these

assumptions, Equation (2.1) can be solved using numerical

techniques described in the next chapter. A graph of the

solution x(t) over a rather small range of t values is

I presented in Figure 2.1.

2.1

1.5-

1.2
__tt

.6_ - V (

.3

0
0 30 60 90 120 150 180 210 240 270 300

T

Figure 2.1 A Chaotic Function x(t)

Taking uniform time steps of, for example, At = 1, a

time series of data points representing values assumed by

2-3! .

x(t) at times 0, 1, 2, ... , 300 could be tabulated. Without

* knowledge of the fact that x(t) satisfies Equation (2.1), an

observer of the data would be unlikely to find the

complicated formula (Equation (3.2)) which generated the

time series. He may instead conclude that the data

contained no order, in the sense that it was generated from

a random, or pseudo random, process, perhaps representing a

scaling of Dow Jones closing averages over a 300 day period.

This thesis will show that a neural network is able to

"learn" the order inherent in such time series and make

rj-. accurate predictions of future values.

2.3 Chaos and Fractal Dimension

The fluctuating portion of x(t) in Figure 2.1 appears

random. But as Farmer points out [Farmer88:5], randomness

is in the eye of the beholder. If randomness is understood

to occur to the extent that something cannot be predicted,

then perhaps with additional data or closer observation, the

data represented in Figure 2.1 can be found to be somewhat

orderly, predictable, and hence less random.

Farmer points out that many of the classic examples of

randomness are not complicated. The dynamics of flipping a

coin, for instance, involve only a few degrees of freedom -

the height of the coin from the table on which it will come

to rest, the direction and magnitude of the force applied by

the thumb - yet the outcomes of coin tosses are considered

random. This randomness comes from the very sensitive

2-4

dependence of the tosses on the initial conditions. For

*example, a very small change in the force applied by the

thumb can result in a completely different outcome. It is

this sensitive dependence which makes prediction difficult.

When sensitive dependence on initial conditions occurs in

a sustained way, the system is said to be chaotic

(Farmer88:6]. An example is a flag flapping in the wind

- [Gleick87:5]. The motion of the flag can be described by a

position function f and a possibly infinite set of time

derivatives f',f'' The set f,ff''constitutes

r a phase space for the system. It turns out that the motion

of the flag approaches a subset of the phase space, called

an attractor, which has an abstractly defined quantity

i called its fractal dimension. A small fractal dimension

indicates little randomness, and a large fractal dimension

indicates great randomness. Chaotic attractors typically

have fractal dimensions in the range of 1.95 to 7.5

(Grassberger83:202-203].

Duffing's Equation, x''(t)+O.lx'(t)+x3 (t) = 12cos(t),

which describes the motion of a damped, forced, nonlinear

oscillator, provides another example of a chaotic system

[Thompson86:7]. The motion x(t) of the oscillator can be

drawn as a trajectory in the two-dimensional phase space

with coordinate axes x(t) and x'(t). Initial conditionz are

specified by given values of x(O) and x'(0), and the

trajectory formed by increasing the parameter t from 0 falls

within a bounded region of phase space. A sampling of this

2-5

trajectory at times t = 2xn, where n is a positive integer,

* results in an infinite set of distinct points in the phase

space. This infinite set is a chaotic attractor for the

system. It is an attractor in the sense that other choices

of initial conditions result in trajectories which converge

to the same set.

The fractal dimension d of the attractor is given by

log [N(c)]
d = lim (2.2)

C-O log(f)

r where N(c) is the number of squares with sides of length -

needed to completely cover the attractor (Froehling8l:607).

Grassberger and Procaccia show how to embed time series

data in a "phase" space and extract the fractal dimension of

the attractor associated with the data [Grassberger83:200].

Section 3.3 provides the details of their method as applied

to the function x(t) of the Glass-Mackey Equation (2.1).

Knowledge of the fractal dimension of time series data is

critical to the configuration of the network used to predict

it. Lapedes provides an inequality relating the number of

inputs required of a predictor network to the fractal

dimension of the data supplied [Lapedes88a:6J.

2.4 An Artificial Neural Network

Artificial neural networks are models (usually simulated

on digital computers) composed of many nonlinear processing

elements (called nodes or neurons) operating in parallel and

2-6

arranged in patterns reminiscent of biological neuron

* interconnections [Lippmann87:4]. They have been studied for

many years in hopes of achieving human-like performance in

the fields of speech and image recognition. Neural networks

typically have their nodes arranged in layers, with one

input layer, one output layer, and one or more hidden layers

between the input and output layers. More than two hidden

layers are (in a sense) superfluous [Lippmann87:18], and the

network developed in this thesis (see Figure 2.2) has in

fact only two hidden layers.

0OUTPUT LAYER

0 o HIDDEN LAYER 2

000 000 HIDDEN LAYER I

Z\ INPUTS

Figure 2.2 Schematic of a Typical Three Layer Network

There is complete interconnection between adjacent layers

in the network; for example, each of the six nodes in hidden

layer 1 has two inputs.

Each hidden layer node has one variable "weight" for each

of its inputs, and exactly one variable "threshold". The

neural network is "trained" by presenting to it data in the

2-7
& ,

form of vectors. If there are N inputs to the network, then

p it is trained using vectors of N + 1 elements: one element

for each input, plus the known (desired) output

corresponding to the given input. Training consists of

iteratively updating weights and thresholds in the hidden

layer nodes as training vectors are repeatedly applied,

toward the goal of minimizing the difference between the

network's actual and desired outputs.

The operation of a network can be explained in geometric

terms, beginning with the operation of a single neuron.

Figure 2.3 shows a typical neuron; the weights w,

and threshold a are imagined residing within the summing

node.

X1

x2

inputs 2Y output

X

n
Y f 1W1 - e }

Figure 2.3 A Single Neuron

The output Y of the node is a sigmoid function given by

2-8

W

Y = f(Z) = l/[1 + exp(-Z)] (2.3)

and is illustrated in Figure 2.4.

1, 0 --

0.5Z

-2 2

Figure 2.4 The Sigmoid Function f(Z)

The node of Figure 2.3, if presented with two inputs, can

be trained to distinguish two adjacent half-plane regions

separated by a straight line [Lippmann87:13]. Three such

nodes, all receiving the same two inputs, can be trained to

distinguish a plane triangular region; see Figure 2.5. That

is, this simple network can be trained to respond

with an output of one (actually, almost one, since the

output has the shape of Figure 2.4) when the coordinates of

any point inside the triangle are presented at the network

inputs, and respond with an output of zero (actually, almost

zero) when the coordinates of any point outside the triangle

2-9

0

0

L \ X\
X 1 X2 X

Figure 2.5 A Triangle Discriminator Network

are presented. The accuracy of the network depends on how

many points in the plane are used to train the network.

In general, any N-sided convex polygon in the plane can

be determined by a three layer network having two inputs, N

middle layer nodes, and one output [Lippmann87:16]. Each

1 mmiddle layer node can be considered a participant in a

logical AND operation involving one of its half-planes.

To distinguish nonconvex or disjoint planar regions,

another middle layer could be added above the existing one.

Each node in this layer can be considered a participant in a

logical OR operation performed by the output node. This OR

operation acts to define the overall region completely. For

example, the region illustrated in Figure 2.6 requires the

use of two nodes in the layer immediately below the output

node. The network of Figure 2.2 could accomplish this.

This research will use a three layer network for time

series prediction. An explanation of the network, including

its weight update algorithm, is presented in Chapter 3.

2-10

S
x 2 0

00

0

Figure 2.6 Plane Region Requiring a Three Layer Network

2.5 Presentation of Time Series Data to Network

Three layer neural networks are not limited to

applications involving the recognition of geometric regions.

A three layer network can "learn" the order inherent in a

time series, then use that "knowledge" to predict later time

series values by feeding its delayed output into an input
L

node.

The number m of network inputs needed for accurate

prediction must satisfy

d < m + 1 < 2d + 1 (2.4)

where d is the fractal dimension of the time series data

(Lapedes88a:6).

Suppose a finite sequence of M time series values S,,

S2,..., SM are spaced equally in time, and it is desired to

predict series values for times larger than M. The approach

2-11

taken is illustrated in Figure 2.7 with a network having

*four inputs. The network is trained using the 5-ary

training vectors (S,,S 2 ,S3 ,S,,S,), (S2 1S,,S4 ,S6 1S6), ... I

(S . 4,SM,.S,S. 2 ,S.,,SM). When training is complete, all

network weights are fixed and the network output is a

complicated but deterministic function of the network

inputs. The value S , is then predicted as the network

output corresponding to the input vector

(SM_3 ,S._2,S_M,S.). The value S.+, then serves as the last

component of the next input vector, which is used to predict

Sm+.2 The prediction process continues as long as desired.

TRAINING VALUES PREDICTED VALUES
SS 6 .. SM 5M+1 SHs2 ..

NEURAL [I IT

M
NETWORK N A

FEEDSACK LOOP USED
ONLY FOR PREDICTION

SI S2 S3 S4

S2 S3 S4 S5 TRAINING
INPUTS

SM-4 SM3 SM-2 SM-1
SM.3 SH.z S 1 S1 PREDICTION

INPUTS
SM.2 SM-I SM SM41

Figure 2.7 Time Series Training and Prediction

Prediction accuracy generally decreases with time due to

incomplete training and numerical rounding.

2-12

2.6 Summary

This chapter has reviewed work done on an important

source of chaotic time series data, the Glass-Mackey

equation. It has described the related concepts of fractal

dimension and chaos. Neural network operation has been

explained in general terms, and a predictor network

configuration was given. The next chapter will show how

chaotic data can be generated, examine some network training

algorithms, and explain how a predictor network can be

constructed.

I

2-13

3. Chaotic Time Series and a Predictor Network

3.1 Introduction

The chaotic natures of several standard dynamical systems

have been studied extensively in the last ten years or so

(Grassberger83:193]. Usually these systems involve several

independent variables. Although they occur frequently in

nature [Lapedes88a:5), chaotic systems which involve a

single function of a single independent variable have been

less intensely investigated. Certainly the best documented

system of this type is the model of blood production studied

by Mackey and Glass in the mid '70s (Mackey77:287]. The

system gives rise to a nonlinear differential delay equation

which bears their names (Equation (2.1)). The solution to

this equation represented an ideal source of chaotic data

for this thesis, although far better prediction results were

obtained using data from a simpler nonperiodic function3-
(which is described in Section 3.3).

This chapter will examine how the Glass-Mackey equation

can be solved. The fractal dimension of a typical example

will be determined. Using the same method, the fractal

dimension of a simpler nonperiodic function (a sum of

sinusoids with incommensurate frequencies) will also be

found. Attention will then be turned to the neural network

which will endeavor to predict chaotic function values after

invocation of a suitable'training algorithm.

3-1

.7

3 Some Approaches to Solving the Glass-Mackey Equation

* The Glass-Mackey equation, Equation (2.1), does not

have a closed form solution. However, two techniques of

numerical analysis readily yield approximate solutions. The

first, Euler's Method [Conte72:329], approximates future

values x(t) based on the definition of the derivative of a

function. If a time step At is sufficiently small, it is

reasonable to make approximations directly from Equation

(2.1):

dx(t) a x(t-r)
[= - b x(t)

dt 1 + x'0 (t-?)

the slope of x(t) at t

x(t + At) - x(t)

At

* Solving for x(t + At) yields

dx(t)
x(t + At) _ x(t) + At e X, (t + At)

dt

which gives future values of x(t) entirely in terms of past

values. This Euler's method solution is labeled x, (t) in

Figure 3.1, where the initial value of x(t) is 2 on the

interval from 0 to r = 30, and where a = 0.2, b = 0.1, and

At = 3.

3-2

2 1

I5

.6

33 ~

0 30 60 90 120 15o 180 210 240 270 30

Figure 3.1 Comparison of Glass-Mackey Solution Methods

The predictor-corrector method [Conte72:347] can also

provide a Glass-Mackey solution. Define f(t) by

* dx(t) a x(t-r)
f(t) = = - b x(t)

dt 1 + X'0 (t-r)

so thatI
t + At t + Atf dx(a)

f f(a) de dE
da,

t t

The integral on the left can be approximated by the area of

a trapezoid, and the integral on the right evaluates simply

by the fundamental theorem of integral calculus. The last

equation therefore becomes

At
f(t + At) + f(t) x(t + At) - x(t) (3.1)

2
3-3

LU P U..E I..I! IE"j I 1.5 H o. .q,-

This equation is solved for x(t + At) in Appendix A, giving

the following expression for the predictor-corrector

approximation:

2 - b At
x2 (t + At) - x(t)t 2 + b At

At r ax(t-r) ax(t+At-r) 1
+ . . + (3.2)

2+bAt l+x, 0 (t-r) l+x1 0 (t+At-r)

The predictor-corrector solution is labeled x2 (t) in Figure

3.1.

The predictor-corrector solution is an improvement over

Euler's method [Conte72:347], but without going into an in-

depth analysis of the error terms at each iteration, it is

difficult to get a feeling for the absolute accuracy of the

solution. Instead, a third approach to solving Equation

(2.1) is possible, one which gives a solution whichIIconverges to the predictor-corrector solution even for

relatively large values of At. This fact allows the use of

the predictor-corrector solution as a baseline with a high

degree of confidence.

This third approach involves multiplying the Glass-Mackey

equation by an exponential integrating factor and again

applying the trapezoidal rule to an integration. Although

the integrating factor technique is a classical method, it

was suggested for this application by Dr. Dennis Quinn of

the mathematics department at AFIT. The derivation of the

3-4

I , , :. i I I * I.I "**'*! i ! ',, , ,

approach is provided in Appendix A. To a good

m approximation, at a time r + k At (where k is a positive

integer) the function x(t) is given by

X3 (i + k At) = x(r)exp(-bkAt)

+ At exp[-b(r+kAt)](0.5G(r) + G(r+At) +

+ G[r+(k-l)At] + 0.5G(,r+kAt)) (3.3)

where G(s) = ax(s-r) exp(bs) / [I + x1 °(s-r)].

The integrating factor method is labeled x3 (t) in Figure

3.1. The three estimates x,, x2 , and x3 in this figure are

based on At = 3, which is one-tenth the length of the

initial (O,r] interval. In Figures 3.2 and 3.3, the

size of At is reduced progressively to values of 1 and 0.1.

The apparent convergence of x2 and x. support the choice of

either method as a "correct" representation of x(t).

However, the integrating factor method which generates x 3 (t)

experiences numerical failures for large values of t (or

equivalently, for large values of k in Equation (3.3)) due

to the presence of exponential terms. Therefore, the

"correct" x(t) used in this thesis was taken as x2. It

generated a time series 350 r-units in length, taking time

steps At = 0.1. This means that the domain of x(t) actually

extends from 0 to 10,500 instead of only to 300 as depicted

in Figures 3.1 through 3.3. Fortunately, time samples for

predicting this chaotic time series are required only at

intervals of about t = 6 days [Lapedes88a:6].

3-5

" ... • -- -- - -- - --- .mmm,,m mmmmmm mm m l l " "

1.81

.3 .

.0 - -(_

0 30 60 90 120 150 180 210 240 270 300

Figure 3.2 Glass-Mackey Solutions with at = I

F 2.1

1.8

1.2 - -

.9__ AIV 3 (T)

.6 Y KIM___ 1 1 t

00 30 60 90 120 150 180 210 240 270 300

Figure 3.3 Glass-Mackey Solutions with At = 0.1

3.3 Fractal Dimension of Time Series Data

The preceding section showed how the chaotic time

series data was generated. As explained in Section 2.5,

this data was used as input to a neural network which was

used to predict future time series values. To be an

effective predictor, the number of network inputs depends on

a property of the time series data known as its fractal

3-6

dimension [Lapedes88a:6]. Specifically, if d represents the

fractal dimension of the data and m represents the number of

network inputs, then m must satisfy d < m+l < 2d+l.

Roughly speaking, the fractal dimension of the data is a

measure of the "raggedness" of the graphed data. Very

smooth data has a low fractal dimension (eg, a straight line

has a fractal dimension of 1.0) and chaotic data has a high

fractal dimension (typically in the range of 1.95 to 7.5).

Grassberger and Procaccia [Grassberger83] describe and

justify a practical method for determining the fractal

r Fdimension of chaotic time series data. This thesis utilizes

their method.

This method first makes a k-dimensional space consisting

of k-tuples taken from the time series. Here k is an

estimate chosen slightly larger than the actual fractal

dimension being sought; a rough estimate (d < k < d+6) is

L sufficient [Grassberger83:200). A set of small numbers 1,

(about six or seven is adequate) is chosen, and for each i

the number of pairs of contiguous k-tuples within Euclidean

distance 1, of each other is determined and denoted C(l,).

Figure 3.4 illustrates a case where the 3-tuple

(PMIM,,PM2) is close to (P0 ,P,,P 2) in Euclidean distance

and would likely contribute to the count C(1,) for most 1,.

On the other hand, (P5 ,P6,P,) is relatively far from

(P0 ,P,,P 2) and might not contribute to the count C(1,) for

any of the selected i. The Grassberger algorithm can be

implemented by taking the smallest 1, and the leftmost 3-

3-7

P6

Figure 3.4 counting Close k-tuples (k 3)

tuple (P0 PIPP) and checking each 3-tuple to the right for
its adherence to the 1 distance criterion - first

S(P*PP2P3), then (P 2P3P4), continuing until all contiguous

3-tuples are compared with (PP, P2) After the rightmost

3-tuple has been compared, the process repeats beginning at

B the left with (Pj,, P 3P). The C(1,) counter continues to

grow as more pairs of 3-tuples are found to fall within the
allowable 1, distance. After the rightmost 3-tuple is

compared with (P,PP), (P2P3P4) serves as the leftmost

3-tuple for the next iteration.

Continuing in like manner, leftmost finally becomes

rightmost, and the counter C(1,) indicates the total number

of contiguous 3-tuples which lie within distance 1, of each

other. The numbers 1, and C(1,) are stored, another ia is

selected, and the process begins anew with (P0,P, ,P) at the

3-8

I I

* *
- - - , . m m - m e s e m m m m m e m lm M - '

I. left. It terminates with C(Ij) determined. All pairs

n (l,,C(l)) are likewise determined and stored.

Grassberger and Procaccia show that if the data used is

chaotic rather than random, arising from an attractor of

dimension less than about seven, and if a large enough

number of sample points are used (roughly five thousand is

. usually adequate), then the pairs obtained by this algorithm

display a logarithmic linearity (or near linearity). That

is, if the pairs (log(l,),log(C(l,)) are plotted, they are

found to be collinear. The slope of this line is a good

r approximation of the fractal dimension of the data.

As a computational convenience, a constant scaling factor

of 10 may be introduced, so that log(C(l,)) is plotted

*against log(l,/1 0). This does not affect the linearity of

the plot, since log(l,/1 0) = log(l,) - log(10). Figure 3.5

shows plots for four k values based on the Glass-Mackey data

described in Section 3.2. The 1, values were 0.1, 0.2,...,

0.7, and 10 was 0.1. Notice that all four sets of data

points are nearly collinear, although the collinearity seems

to increase somewhat as k increases. A reasonable estimate

of the fractal dimension d of the Glass-Mackey data can be

determined as the slope of any of these lines; from k = 7,

conclude that d - 2.5.

The criterion d < m+l < 2d+l (Equation (2.4)) in this

case indicates that the number m of network inputs should be

between 1.5 and 5. In this research, m = 4 was used,

3-9

iog(C(O)

-I

k:6

Ot

Figure 3.5 Estimating Fractal Dimension as Linear Slope

following Lapedes' work with similar data having fractal
-dimensions of 2.1 and 3.5 [Lapedes88b:1].

Lapedes mentions that the results he obtained in

predicting Glass-Mackey data involved training run times of
-30 to 60 minutes on a Cray X-MP computer [Lapedes88b:19].

The research conducted for this thesis used a VAX 11/780 as

the primary host. It was hoped that a time series which was

somewhat less random would prove manageable on the VAX while

lending insight to network parameter values which might

allow some degree of Glass-Mackey prediction. The function

chosen was a sum of sine waves with incommensurate

frequencies (frequencies are incommensurate if their ratio

is an irrational number). Specifically, the function was

y(t) = [2 + sin(2 ' " t) + sin(31 / t)]/2

3-10

0.5 ~ Mme mm I 1.5 2m

and its fractal dimension was also determined using the

Grassberger-Procaccia method. A data set of 5220 samples of

y(t) (taken at intervals of At = 2) were input to the same

fractal dimension program used to generate the data of

Figure 3.5, yielding a fractal dimension of 1.7. A graph of

a small sample of y(t) is shown in Figure 3.6. Like the

Glass-Mackey solution, it is nonperiodic.

2

0 -__

0 T 40

Figure 3.6 A Sum of Sine Waves

3.4 Building a Predictor Network

3.4.1 Batch Processing with a Degenerate Network. The

simplest possible neural network consists of a single

neuron. Valuable insights into the behavior of large

networks follow from a careful examination of their most

basic building blocks.

A single neuron with two inputs can be trained to

distinguish any two half-plane regions determined by a

3-11

straight line [Lippmann87:13]. Figure 3.7 shows the line

SX 2 = X1 and four points which will be used to train a single

x2

des Ired

output (0)

desired

(0,-)
output
0

Figure 3.7 Input Plane of a Single Neuron Network

neuron to approximate this line. Using the notation of

Figure 2.3, this simple network has only two inputs X, and

X2 , and two corresponding weights W, and W2 . The threshold

8 is given the constant value zero, and the output is

assumed sigmoidal so Y = 1/[1 + exp(-WiX1 - W2X2)]. The

choice of 0 = 0 makes Y a simple two dimensional function of

weight space, so that an error function may be graphically

represented above the weight space. The network is to be

trained in such a way that points in the upper left region

of the input plane (including the points (0,1) and (-1,0))

produce outputs Y 1 1, and points in the lower right region

produce outputs Y - 0. Although a sigmoid never actually

attains the values 1 and 0, these are nevertheless referred

3-12

to as the desired outputs within their respective half-plane

regions. Thus training consists of finding values for the

weights W, and W2 which result in a three dimensional

sigmoid above the input plane. The sigmoid is given by Y =

i/(i +exp(-W,X, - W2X2)]; it is nearly flat and zero-valued

in the lower right region, it rises sharply to values near

one-half at the line X2 = X,, and is nearly flat and unity-

valued in the upper left region. It appears in cross

section in Figure 2.4.

Because a sigmoid only approaches zero and one

asymptotically, any choice of values for W1 and W2 will

yield Y values which differ at least slightly from the

desired outputs, regardless of location in the input plane.

The best training can accomplish is to minimize these

differences, or errors, based on the known desired values

for known inputs. One way to do this is to construct a

positive-valued error function which has W, and W2 as its

only independent variables and which incorporates all known

input coordinates and desired outputs. This approach is

called batch processing of input vectors (an N-tuple of

input coordinates, followed by a desired output value,

constitute an N + 1 dimensional "input vector").

Lapedes[88a:3) suggests using a positive additive

contribution from each input vector in constructing an error

function. In the present example, suppose a sigmoid

Y(X,,X2;0,,02) = 1/[1 + exp(-wX, - W 2 X2)], with w, and w2

fixed, is suggested as a solution to the half-plane

3-13

separation problem of Figure 3.7. Any notion of the error

associated with this solution must be based on the errors

arising at each known set of input coordinates. A

reasonable approach is to sum the squares of the errors at

each set of known inputs (the squares are used to avoid the

possibility of negative contributions to the total error).

Thus the error E(wCO2) for the solution Y(X,X 2 ;W, ,1 2) is

given by

E(w, ,C2) = [desired(-l,0) - Y(-1,0)] 2

+ [desired(0,1) - Y(0,1)] 2

+ [desired(l,O) - y(I,0)]2

+ [desired(O,-l) - Y(O,-]j2

- (I - Y(-l,O)3 2 + [I - Y(Ol)]2

+ [0 - Y(1,O)] 2 + [0 - Y(o,-l)] 2 (3.4)

This numerical value may now be compared to other valuesI.I
of error arising from other potential solutions

Y(X, X2 ;w1 ,w2), and the pair of weights (w,,w 2) which has

the minimum error value E(w ,w2) may be thought of as the

best weight-space solution of all pairs considered.

In general, the batch-processing error function of any

single-output network may be expressed as

E(W) . [desired(s) - actual(s)]2 (3.5)
se S

where W is a vector of all variable network weights and S is

the set of network training vectors. The goal of any

3-14

training algorithm is to find a point in weight space which

in some sense minimizes the value of the function E.

Suppose a point W(O) is chosen more or less at random in

* weight space, and for convenience assume H(O) is in two-

space (as in the half-plane separation problem). Figure 3.8

depicts the initial steps of a "steepest descent" method of

finding the minimum value of the error surface E, which is

assumed to lie at the center of the concentric contours.

7S S0

Figure 3.8 Steepest Descent Minimization

Points S0, S,, and S2 lie on the surface above the points

H(O), H(l), and W(2), respectively. First the gradient of E

(denoted yE) is determined at W(O). The gradient is a

vector which points in the direction of greatest change of E

and has a magnitude proportional to the steepness of E. The

gradient at W(O) lies in a unique plane that is itself

perpendicular to the (W,,W 2) plane. This plane is shown in

two orientations in Figure 3.9 where it is understood that

3-15

the horizontal axis A lies in the (W,,W 2) plane, and P0 and

* P, correspond to W(O) and W(1) respectively. In this case

E E

E0 so EO - so

A A

PO P I PL P0

Figure 3.9 Cross Sections Containing S. and S1

the error function may be expressed as E(A), a function of

* the single variable A. A new point W(l) in weight space is

found using the rule W(1) = W(0) - r vE(W(O)), where n is a

small positive value. This rule ensures that W(l) will lie

M on the horizontal A axis.

Points P1 on the A axis may also be generated by the

rule

dE
P, = Po -, 7 - (P0) (3.6)

dA

In either case, as q becomes small, W(l) becomes close to

W(O) and the point P, approaches P0. Separating the

components of the vector equation, this may also be written

as the pair of equations

3-16

~~Ah&w!(U)iI= wL(o) - .,7 lIwE o

8E
Wl (l) = W, (0) - (W7)

3 E
W2 (l) = W2 (0) - ? -(k!(0))

OW2

If the step size q is chosen small enough, the value E, of E

at the new point S, will be smaller than the value E0 of E

at the original point So . To see this, suppose the

direction of the A axis in Figure 3.9 had been chosen so

that E is sloping down to the right at So . Then the

derivative of E with respect to A is negative at P0. Since

E is a smooth function, this means that this derivative must

remain negative in some neighborhood of P0 .

Choosing n small enough will ensure that the point

dE
P, = P0 - 7 - (P 0)

dA

lies within this neighborhood. Since q > 0, this means P1 >

P0 and consequently E(P,) < E(P0).

On the other hand, if E is sloping up to the right in

Figure 3.8, then the derivative of E with respect to A is

positive at P0. In this case, for small enough r,

dE
P, = P0 - (Po) < P0

dA

and again E(P,) < E(P0).

3-17

Having thus arrived at the point S, on the error surface

of Figure 3.8, the same process may be applied to yield the

point S2. and so forth until a suitable weight update

termination criterion is met. However, Dahl[88:7] suggests

using in a neural network an update method which fits a

parabolic approximation to each cross-sectional slice of the

error surface and iterates using the minima of these

parabolas. Instead of using point P, in Figure 3.9 to

determine the first point of iteration S,, this method uses

an approximation to the point P.- Appendix B contains the

details of this method. Although it is a classical

minimization technique, it is here called the QSD algorithm

for convenience. It is the method used to update all

variable weights in the predictor network developed in this

thesis.

An exploration of the error surface arising from the

simple half-plane separation network shows the advantage of

this technique. Figure 3.10 is a three dimensional plot of

this surface as calculated directly from Equation (3.4).

Figure 3.11 gives a contour representation of the same

surface. Superimposed on this surface is a sequence of

vectors showing each jump taken by the QSD algorithm,

L beginning at the initial weight pair (4,-3.5). The W1 and

W2 axes both extend from -10 to 10. The lowest contour line

is labeled 1, and the highest is labeled 30. The length of

each vector is represented by the length of its arrowhead.

The algorithm terminates when the distance between

3-18

7w 0.
-5 -5.. w

I- Figure 3.10 A Simple Error Surface

.- too -Ao -am -400 -20 00M 0.200 0400 0 0" LCO

Figure 3.11 Contour Plot Demonstrating QSD Algorithm

3-19

successive weight pairs is less than 0.00065 (chosen by

trail and error), or when 240 weight updates have been

performed, whichever occurs first. Figure 3.11 reveals that

the QSD algorithm terminated after 7 weight updates at the

weight pair (W,,W 2) = (-9.8,9.4).

Compare this performance to that of an update algorithm

which changes weights on the basis of one training vector

per update [Lippmann87:17). The weight update rule in this

case reduces to P, = P0 - v vE(P0) at each iteration, where

E(H) = (desired(s) - actual(s)] 2 for a single input vector

s. No attempt is made to seek a lower point on the plane

determined by vE(P0), and vE(P0) is based on only a single

component of the error surface defined in Equation (3.5).

* nFigure 3.12 shows the evolution of weights in such an

algorithm. The parameter q (corresponding to the initial

step size A, of Appendix B) and criteria for update

termination are the same as those applicable to the QSD

algorithm depicted in Figure 3.11. Hundreds of small

updates occur in Figure 3.12 to the left of W, = -2.0. The

algorithm actually terminates at (W1,W 2) = (-4.0,4.0) after

the maximum allowed number of iterations, 240.

The QSD technique of minimizing cross-sections can also

be applied on an input-by-input basis, though generally with

less satisfactory results than obtainable with batch

processing. Figure 3.13 shows weights being updated from

*, the same initial point and with the same parameters as

before. As in Figure 3.12, updating causes weights to be

3-20

f2W

I I I

-I - - _ _ - T-

.tha o - 0000 can C~ AM *Am AM LOOD

VI

* Figure 3.12 Single-Step, Input-by-Input Weight Updating

shifted in rectilinear fashion through weight space. This

is because each contributing component of the total error
function has only one nonvanishing weight component. For

example, the last squared term of Equation (3.4) has a zero

coefficient with its W, component: Y(O,-l) = 1/[i + exp(O.

W, - W2)]. The square of Y(O,-l) is also roughly sigmoidal

and varies only in the W2 direction.

The final weight update algorithm to be considered avoids

rectilinear updating, as does the QSD algorithm, by

constructing the total error surface according to Equation

(3.4) and descending according to the gradient of the

surface. This makes it, too, a batch processing algorithm.

3-21

'-LO O -a . - .0-0 4 -20 O O " 00 o8 a " O W

i Figure 3.13 Input-by-Input Application of QSD

It simplifies the QSD algorithm by taking only a single step

in the direction of the gradient at each iteration. Figure

L 3.14 illustrates its performance.

The algorithm of Figure 3.14 attains low error values as

quickly as the full QSD algorithm (for this choice of

starting point), but is unable to attain extremely small

error surface values in a small number of steps. The

plotting program used to generate Figure 3.14 does not show

hundreds of very small jumps to the left of W, = -4.0. The

algorithm terminated after the maximum allowed number of

iterations, 240, at the point (W,,W 2) =(-4.82,4.81).

3-22

m _ -

I'

Figure 3.14 Single-Step Batch Processing

Figure 3.14 points out nicely an advantage of the QSD

algorithm. The algorithm driving Figure 3.14 makes one step

per update in the direction of the gradient, as in moving

from P0 to P1 in Figure 3.9. But the size of the step is

proportional to the slope of the surface (Equation (3.6)),

so in regions of shallow slope, step sizes become minuscule

and training requires very large numbers of updates. Hence

the hundreds of tiny updates at the end. On the other hand,

the QSD algorithm has the potential of moving directly to

point P, in Figure 3.9, regardless of the error surface

gradient. Thus it attains a lower error value in far fewer

steps (Figure 3.11).

3-23

.1t;,
,

: . - I I " - " . .

Similar comparisons of the algorithms represented in

! Figures 3.11 through 3.14 for other choices of initial

points (W11W 2) revealed that the QSD algorithm always

attained very low error values most quickly. See Appendix D

for sample plots from different initial points. Because its

performance advantage comes at a low cost in programming

complexity, a direct generalization of the QSD algorithm was

chosen for implementation in the predictor network.

3.4.2 A Geometric Interpretation of Time Series

Learning. Section 2.4 described how a three layer back

propagation neural network can learn to "recognize" a plane

region. The coordinates of points in the plane correspond

to distinct network inputs. Whenever a point in the plane

i falls within the desired region, the net's output is near

one; all other points in the plane yield network outputs

near zero.

Time series prediction requires (unlike some pattern

recognition networks) variable weights in the output neuron

because network output values need to track time series

values over a sometimes continuous range of numbers.

Network outputs of only zero and one would suffice only in

the case where the time series attained no more than two

values. A hypothetical distribution of network weights will

help to clarify the need for variable output node weights in

a predictor network.

3-24

Consider a simple time series consisting of the sequence

* of values 0.5, 0.9, 0.5, 0.1, 0.5,.... Figure

3.15 shows that this sequence is actually a sampling at 900

0.9

0.5

0 2 3 4 5 6 7

Figure 3.15 A Simple Time Series

intervals of a DC biased sine wave. Consider a predictor

network with only two inputs, the two previous time samples.

The network is assigned the task of learning through its

weight update algorithm the following mapping of two

dimensional input space into the range of values attained by

the time series: (0.5,0.9) - 0.5; (0.9,0.5) - 0.1; (0.5,0.1)

- 0.5; (0.1,0.5) - 0.9.

Figure 3.16 shows this mapping above the input plane

(X,,X 2). There are three regions in the plane corresponding

to the three values attained by the time series. This

suggests using three groups of first layer neurons to

identify these regions. Figure 3.17 shows one way this can

be done. Although there is complete interconnectivity of

3-25

I i I P -j

F7

5.'

' o, \ • \

0. 1 . 0,9

r Figure 3.16 Mapping Sequence Pairs to Next Sequence Value

nodes between layers, for clarity only the connectivity of

the nodes contributing to an output value of 0.9 is shown.I

OUTPUT LAYER

0 0 LAYER 2

0 0 0 0 LAYER L

00 INPUTS

Figure 3.17 A Simple Predictor Network

Each of the layer one neurons corresponds to a vertical

line in Figure 3.16. Since single neurons are capable of

3-26

distinguishing half-plane regions, proper selections of

p weights can enable two neurons to identify a region between

two vertical lines [Lippmann87:14]. The two leftmost layer

one neurons correspond to vertical lines which separate the

point (0.1,0.5) from the other three input points. The

remaining four neurons correspond to vertical lines which

complete the demarcation in the input plane of three

disjoint vertical bands containing the points 1) (0.1,0.5);

2) (0.5,0.1) and (0.5,0.9); and 3) (0.9,0.5).

Therefore, when an input pair falls in the leftmost band,

the two leftmost layer one neurons both have output values

near one. The leftmost layer two neuron works with these

two neurons to produce a high output of its own in this

*situation. It does this by adjusting its weights to perform

a logical AND operation on its associated two neurons

[Lippmann87:16]. The weights connecting the leftmost layer

* two neuron to all other layer one neurons can be trained to

values near zero, making the outputs of all other layer one

neurons irrelevant.

The remaining two layer two neurons operate in similar

fashion with the pairs of layer one neurons immediately

below them. Thus when an input pair falls near (0.1,0.5),

* the output of the leftmost layer two neuron is near one and

the outputs of the other layer two neurons are near zero.

The output layer neuron therefore has an output Y given to a

good approximation by Y = 1/[l + exp(-WX + 6)] (see Equation

(2.3)), where the weight W and input X correspond to its

3-27

connection with the leftmost layer two neuron. The

threshold e can train to any fixed value. Since an input

near (0.1,0.5) results in X 1 1, the network output Y is

therefore a monotonically increasing function of W (see

Figure 2.4). Since W is trainable, it can assume a value

which will give the desired output of 0.9 (if 0=0, then

W=2.2).

Weights connecting the other layer two neurons to the

output neuron can similarly be trained to yield Y values of

0.5 (when the middle neuron's output is high) and 0.1 (when

1- the rightmost neuron's output is high).

Although the foregoing discussion has explained how a

network could train its weights to solve a simple prediction

problem, it does not imply that a network will in fact

adjust its weights in this manner. Nor was the choice of

plane regions in Figure 3.16 necessarily optimal in terms of

neural net performance. Nevertheless, it provides a basis

for a general rule for selecting the numbers of neurons

needed on the first and second layers of a predictor network

used for sine wave prediction. This rule is illuminated by

consideration of a sine wave sampled at 450 intervals.

Figure 3.18 shows such a sine wave. Consider now a

three input predictor network assigned the task of learning

and then predicting values of this sine wave. This network

must learn the following mapping of points in three-space:

A : (0.5,0.78,0.9) - 0.78

B : (0.78,0.9,0.78) - 0.5

3-28

0.9

0.781

0.5

0.22

0.1 PC
: t 't --- --- f--+-- 4-1-- I -F -I I - ~--- -- T

0 1 2 3 4 5 6 7 8 9 10 It t2 13 14

v [Figure 3.18 Another Time Series

C : (0.9,0.78,0.5) - 0.22

D : (0.78,0.5,0.22) - 0.1

E : (0.5,0.22,0.1) -- 0.22

F : (0.22,0.1,0.22) -, 0.5

G : (0.1,0.22,0.5) - 0.78

H : (0.22,0.5,0.78) - 0.9

In this case, there are five distinct output values; three

of them occur twice, and two of them (the maximum and

minimum values of the sine wave) occur only once.

This prediction process could be compared to a Gauss-

Markov-3 model (the scalar output of a 3-state shaping

filter). A Kalman filter could be built to do the desired

prediction. The adaptive gain KF is then tantamount to

adaptive weight selection by a neural network.

3-29

In two-space, distinct output values could be separated

! by parallel lines (Figure 3.16). In this example in three-

space, all the pairs of points with equal output values can

be separated by disjoint three-sided tubes. Two additional

tubes can easily be selected to enclose the two remaining

points in such a way that all five output values are

represented by disjoint tubes.

To see this, consider projections of the points A through

G in the space (X,X 2 ,X3) onto the space (X,X 2) as shown in

Figure 3.19. The lines A'G', B'F', and C'E' are

I2

//
1.0 /

/"U / ,'

Figure 3.19 Parallel Projections in Two-space

mutually parallel, so the perpendicular planes containing

the pairs of points (A,G), (B,F), and (C,E) are also

parallel. Therefore tubes taken close to the lines AG, BF,

and CE will provide disjoint separation, regardless of the

slopes of the lines in three-space.

3-30

Just as a single neuron can distinguish half-plane

i regions in two-space by finding the line which separates

them, it can (using three inputs instead of two) separate

three-space into two regions by determining a plane

,Lippmann87:13]. This suggests using three layer one

neurons for each distinct output value, since each distinct

output value is contained in a unique three-sided tube. One

layer two neuron can then perform a logical AND operation on

the three outputs to distinguish the inside of the tube

(with an output near one) from the outside (with an output

U rnear zero). Figure 3.20 shows a network

0 OUTPUT

0 0 0 0 0 LAYER2

c000 000 ovo o0o 000 LAYER I

z2N INPUTS

Figure 3.20 A Three Input Predictor Network

configuration which should therefore be adequate for

predicting this time series. In fact, the neural network

presented in Appendix C predicted the time series rather

well using the configuration of Figure 3.20 (see Table 4.2).

3-31

Figures 3.17 and 3.20 suggest the following rule for

determining numbers of nodes to be used when predicting sine

waves. The number of first layer nodes can be chosen

approximately equal to the product of the number of distinct

values assumed by the times series and the number of network

inputs. The number of second layer nodes can be chosen

approximately equal to the number of distinct values assumed

by the time series.

Predicting chaotic rather than periodic data introduces

complexity to the partitioning of the input space. Chaotic

data may be represented as tens of "cycles" of nonperiodic

undulations appended to the sine wave of Figure 3.18 (see

Figure 2.1). Initial values from the new data may fit

adequately within existing tubes, but soon new data values

(or old data values arising from greatly displaced input

space coordinates) will force construction of new

partitioning planes. Each new plane corresponds to a new

layer one neuron. Furthermore, in instances where distant

input vectors yield the same output, it may be necessary to

partition equal data values disjointly, thereby adding to

the number of second layer neurons required.

All of this suggests that large numbers of first and

' second layer neurons might be necessary for predicting

chaotic data. But the geometric generalization from sine

waves to chaotic data may be invalid. For example, weights

may actually be updating in accord with the Fourier

components of the underlying chaotic function. Furthermore,

-: , 3-32

LI I II | I mm

the network's output is a continuous function of the network

inputs, so some ability to interpolate between close learned

output values might be expected. It turned out that both

Lapedes' network [Lapedes88b:15] and the network of Appendix

C were able to predict chaotic data using a total of only 20

hidden layer nodes. A parallel study being done at AFIT

[Tarr88] is investigating optimization of the numbers of

nodes for a given problem.

3.4.3 An Object-Oriented Design Predictor Network. It

* was recognized from the outset of this thesis effort that

r construction of a neural network which has the ability to

predict the future (of a chaotic data stream) would raise

far more questions about it than the author can begin to

answer. Because of anticipated follow-on research, it was

felt that the implementation of the network should be as

understandable and modifiable as possible. Because the

* object-oriented design programming methodology (OOD)

strongly supports these goals (Booch83:37], this methodology

was chosen to design the network. The programming language

selected was Ada, primarily because it directly supports the

packaging construct essential to OOD.

Object-oriented design follows the following steps

[Booch83:40]:

1. Define the problem

2. Develop an informal strategy for the problem domain

3. Formalize the strategy by

a. Identifying the objects and their attributes

3-33

7 7 - -i . ,

b. Identifying operations on the objects

*c. Establishing the interfaces among the objects and

operations, and

d. Deciding on implementations of the objects and

operations.

The intention in this thesis is not to explain the

network design in detail, but rather to provide to those

familiar with OOD the all-important informal strategy used

and a Booch diagram showing interfaces so that the source

code provided in Appendix C will be more readable. It is

hoped that the comments within the source code will allow

quick comprehension of program detail.

The informal strategy may be stated in five sentences:

* Initialize the network by obtaining essential network

parameters. Assign initial values to all network weights.

Get the time series values to be used in training and

prediction. Train the network. Predict future time series

values.

Objects were extracted from this informal strategy and

used to form program packages. The "training" object was

refined somewhat by extracting an "error surface" object.

The Booch diagram showing the package visibilities is given

in Figure 3.21.

The procedure JIMSPNET is the driving procedure of the

program. Notice that the body of the procedure

recapitulates the informal strategy.

3-34

[%

J IMSPNET

tRIIGPACKAGE NEMIEP CCAGE PREDICTION PACKAGE

ERR. SURF PACKAGE NEIURON PACKAGE -

Figure 3.21 Booch Diagram of OOD Predictor Network

The NETWORK package contains the procedure which obtains

from an input file named PARAMS five essential network

parameters. These parameters are: the number of network

inputs, the numbers of first and second layer neurons, the

number of training vectors, and the number of values to be

predicted. It also contains the procedure which obtains

time series values from an input file named GMCDATA.

The TRAINING package is by far the largest package. It

provides output to a file named TRNDATA to allow the program

user to observe training performance.

The PREDICTION package includes the procedure PREDICT

which provides predicted time series values to a file named

3-35

PRVALS. The values in PRVALS may then be compared to actual

*time series values.

3.5 Summary

This chapter has shown how chaotic data was generated.

It compared the error surface performance of the QSD

algorithm to some other weight update algorithms. A

plausible explanation of weight updating in a predictor

network was given, and the software architecture of a

predictor network was outlined. The next chapter will

present and discuss the results obtained using this

network.

3-36

4. Results and Discussion

4.1 Introduction

The predictor network developed in the preceding chapter

was tested first on data obtained by sampling sine waves at

equally spaced intervals. When it was clear that the

network was learning mappings of distinct input sequences to

desired output values, the sine waves were sampled (after

training) at intervals of the same length but at offset

phases to observe how well the entire sine waves were being

f k learned. Using the insight gained in these experiments,

predictions were made using the mildly chaotic data obtained

from the sum of incommensurate sine waves. Building on this

experience, attempts were made to predict the more highly

chaotic Glass-Mackey data.

4.2 Sine Wave Results

m Figure 3.17 illustrates the first network configuration

tested. This network was trained to predict a scaled

version of the time series data shown in Figure 3.15. It

was trained on the first full cycle of the sine wave, and

instructed to predict time series values several cycles into

the future at time steps At = ff/2.

Because the chaotic data shown in Figure 3.3 falls

between the values zero and two rather than zero and one,

the network was designed to divide all input data by two and

multiply all output data by two. This scaling allowed the

4-1

. .- '37 711o

network output to express values larger than one, which is

an upper bound of the sigmoidal output of every neuron.

Table 4.1 lists the results of this experiment. In

Table 4.1 Two Input Sine Wave Prediction

-T- --X(T)-- -XPRED(T)- -T- --X(T)-- -XPRED(T)-
0 1.0 13 1.8 1.79820
1 1.8 14 1.0 1.00334
2 1.0 - 15 0.2 0.203125
3 0.2 - 16 1.0 0.993311
4 1.0 - 17 1.8 1.79808
5 1.8 - 18 1.0 1.01419
6 1.0 0.999954 19 0.2 0.203015
7 0.2 0.202788 20 1.0 0.972991
8 1.0 0.999666 21 1.8 1.79759
9 1.8 1.79831 22 1.0 1.05749

10 1.0 1.00063 23 0.2 0.202587
11 0.2 0.203136 24 1.0 0.892492
12 1.0 0.998394 25 1.8 1.79562

this table (and all subsequent tables in this chapter), TI
represents the number of At intervals to the right of zero

on the t axis. The first predicted value XPRED(T) occurred

at T = 6. It was the network output when the actual time

series values X(4) = 1.0 and X(5) = 1.8 appeared at the

inputs of the trained network. The second predicted value

XPRED(7) was the network output when X(5) and XPRED(6)

appeared at the inputs. The third and all later predicted

values used predicted rather than actual time series values

at both network inputs.

Figure 4.1 presents graphically the data of Table 4.1.

Actual X(T) values occur at integer values of T, and are

represented by asterisks; predicted values are circles. All

remaining figures in this chapter use the same convention.

4-2

1.4

12

.6

0 3 6 9 12 15 18 21 24 27

Figure 4.1 Two Input Sine Wave Prediction

Training the network with the first four input vectors

required numerous adjustments of training parameters before

the good results of Table 4.1 were obtained. Using notation

similar to that found in the source code of Appendix C, the

following parameter values were finally selected:

Al = 0.5 (initial step size in the QSD algorithm)

MAXITERS = 800 (maximum number of times quadratic minima

selected; a termination criterion)
-20

WTSCLOSE = 10 (closest allowed distance between updated

weights; checked at each iteration, this

is also a termination criterion)

uwidth = 1.6 (distance from zero of endpoints of

interval from which initial weight values

are randomly chosen)

The extremely small value of WTSCLOSE was selected to ensure

that MAXITERS would reach 800. Thus 800 linear descents of

4-3

the error surface were achieved, resulting in a very low

m error surface value. It was at this point that the

prediction weights were fixed.

When the step size Al was taken larger than about 0.5,

the algorithm would sometimes terminate prematurely (in

fewer than 800 iterations) because the minimizing point in

weight space of the set of points {P0 ,P,,P 2) would be the

initial point P0 (see Appendix B). On the other hand, if Al

was taken larger than about 0.01, then 800 iterations were

not enough to result in a low final error value.

When the initial weight interval uwidth was chosen less

than about 0.5, the algorithm sometimes iterated on too

small a subset of the weight space and resulted in a rather

n ihigh final error value (coresponding to a high local

minimum). When uwidth was chosen greater than about 5.0,

sometimes all predicted values were very close or identical.

In such cases, the sigmoidal outputs of some or all of the

neurons could assume values very near their saturation

values of zero or one.

The same parameters were used to predict values of the

time series depicted in Figure 3.18, using the network

configuration shown in Figure 3.20. Table 4.2 gives the

results of this experiment, and Figure 4.2 shows the results

graphically. Notice that the prediction accuracy has

declined from the results of Table 4.1. This seems

reasonable since the same number of updates are now taking

place in a much higher dimensional weight space. The two

4-4

input network has 43 weights, and the three input network

fl has 146. As the number of nodes in the network increases,

it seemed reasonable that the number of update iterations

should therefore be increased, too.

Table 4.2 Three Input Sine Wave Prediction

-T- --X(T)-- -XPRED(T)- -T- --X(T)-- -XPRED(T)-
0 1.0000 - 16 1.0000 1.0309
1 1.5657 - 17 1.5657 1.5699
2 1.8000 - 18 1.8000 1.7241
3 1.5657 - 19 1.5657 1.5561
4 1.0000 - 20 1.0000 0.9698
5 0.4343 - 21 0.4343 0.4172
6 0.2000 - 22 0.2000 0.2851
7 0.4343 - 23 0.4343 0.4471
8 1.0000 - 24 1.0000 1.0498
9 1.5657 - 25 1.5657 1.5766
10 1.8000 26 1.8000 1.7154
11 1.5657 1.6021 27 1.5657 1.5418
12 1.0000 1.0328 28 1.0000 0.9477

i 13 0.4343 0.4060 29 0.4343 0.4117
14 0.2000 0.2746 30 0.2000 0.2869
15 0.4343 0.4079

£

18- I1

1 2

3 6 9 12 15 18 21 24 21 r1

Figure 4.2 Three Input Sine Wave Prediction

4-5

One might ask whether the trained network which produced

the results of Table 4.1 had come closer to "learning" the

frequency of the sine wave, or to "learning" regions in the

two dimensional input space in the vicinity of the inputs

- used for training (see Figure 3.16). In an attempt to

answer this, the PREDICT procedure in Appendix C was

modified slightly so that, following training, prediction

could proceed immediately on data representing different

inputs than any the network had yet seen. In the first

case, after training with the input values 1.0, 1.8, 1.0,

0.2, and 1.0, the network was asked to provide an output

when inputs of 0.95 and 0.15 were presented. Being near the

learned input pair (1.0,0.2), the output might be expected

to be slightly less than 1.0. In fact, however, the output

was about 1.09. In the second case, after training, the

network was asked to provide an output when inputs of 0.903

* and 0.206 were presented. These inputs correspond to a 70

shift in the sine wave. Following the sine wave, an output

somewhat greater than 1.0 (1.097, actually) might be

expected. This was in fact the result, since an initial

output of about 1.16 was obtained.

Although this experiment proved nothing, it did suggest

that network learning may more accurately be described as an

adaptation to the frequency of the input data than to its

spatial orientation.

4-6

4.3 Incommensurate Sine Waves

The next experiments focused on predicting values of the

data taken from a sum of sine waves with incommensurate

frequencies. A short range of the function used is shown in

Figure 3.6. Its fractal dimension was determined to be

about 1.7 (Section 3.3). Applying Equation (2.4), the

acceptable range of number of inputs was found to be from

one to three, inclusive. For prediction purposes, samples

were taken at intervals of At = 0.8. The network was

configured most successfully with 3 inputs, 15 first layer

nodes, and 5 second layer nodes. As in Section 4.2, some

trial and error was required to find a good value for the

parameter uwidth (in this case, 3.2). It was permitted to

* Iperform 1200 weight updates using the QSD algorithm before

training was terminated and prediction initiated. Fewer

updates resulted in less prediction accuracy, and more

* updates would probably have given greater accuracy.

Performing 1200 updates required about 48 hours of VAX-

11/780 batch time, however, and further updates would

increase this time.

Table 4.3 shows the results of the experiment with the

described parameter settings. Figure 4.3 presents the

results graphically. Prediction began at T = 28, so

training ended at the abscissa value (T-l).At = 21.6.

Training was thus conducted over about four full cycles of

each component sine wave. Extending the training interval

4-7

would probably have increased the prediction accuracy, but

* again at the expense of increased run time.

Table 4.3 Incommensurate Sines Prediction

-T- --X(T)-- -XPRED(T)- -T- --X(T)-- -XPRED(T)-
35 0.9830 0.7723

* 36 0.8690 0.3059
* • 37 0.9955 0.8015

28 1.5751 1.5794 38 0.9237 1.5632
29 1.7976 1.7675 39 0.7746 1.5398
30 0.9562 0.8375 40 1.0272 0.7324
31 0.3257 0.2486 41 1.4661 0.3340
32 0.6767 0.7116 42 1.3067 0.8591
33 1.3146 1.5607 43 0.5543 1.5703
34 1.3532 1.6127 44 0.2881 1.4916

15

1 2 99
I 18 21 24 21 30 33 36 31 42 45 413

Figure 4.3 Incommensurate Sines Prediction

4.4 Glass-Mackey Prediction

The final data predicted was the Glass-Mackey data

represented (over a short range) in Figure 2.1. In Section

3.3, the acceptable number of inputs was found to be two,

three, or four. Training was initiated at time t = 60 and

proceeded using samples taken at intervals At = 6 (following

[Lapedes88a:6]). Best results were obtained using a network

4-8

configuration of 4 inputs, 10 layer one nodes, and 10 layer

two nodes. Five hundred training vectors were used. Large

numbers of training vectors demand long computer run times,

so to keep the run time reasonable, only 40 weight updates

were performed. Additional training would most likely have

resulted in more accurate prediction.

The initial predicted values are presented in Table 4.4.

Figure 4.4 shows these values graphically. Over 72 hours of

VAX-11/780 batch time were needed to obtain these results.

Table 4.4 Glass-Mackey Prediction

-T- --X(T)-- -XPRED(T)- -T- --X(T)-- -XPRED(T)-
• • 509 0.8472 0.8637
* - 510 0.6219 0.8045
• • 511 0.6231 0.8039

504 1.2290 1.1573 512 0.4902 0.8617
505 1.1303 1.1619 513 0.3704 0.9531
506 1.1242 1.1414 514 0.6344 1.0422
507 1.2658 1.0653 515 0.9531 1.1022
508 1.1946 0.9600 516 1.0803 1.1225

* These predicted values fail to track the actual Glass-

Mackey values after a much shorter period than any of the

previous results. This can probably be attributed to the

shortage of computer run time. The other predictions

performed had sufficient run time to reduce the error

function value by at least two orders of magnitude. The

Glass-Mackey error value was reduced slightly less than one

order of magnitude.

4-9

1.44
"4 , -

IIf2
i ur 4 510 513 516 519 522 56 528

GFigure 4.4 lass-Mackey Prediction

4.5 Summary

This chapter has presented and discussed the prediction

results obtained. The next chapter will give the

conclusions and recommendations of this thesis.

41

4-10

5. Conclusions and Recommendations
I

5.1 Conclusions

This thesis has shown that a batch processing neural

network which incorporates the efficient QSD training

algorithm can predict chaotic data. In doing so, several

insights into neural net prediction were gained.

Lapedes provided the rule d < m+l < 2d+l [Lapedes88a:6]

for determining the number m of network inputs, given the

fractal dimension d of the data being predicted. It was

found that the largest values of m permitted by this rule

gave the best prediction results.

Prediction accuracy can sometimes be improved by

adjusting the parameter Al in the QSD algorithm (given that

all other network parameters remain unchanged). The Al

parameter is directly proportional to the initial step taken

by the algorithm. Making it larger can improve training

efficiency, although if it is taken too large the algorithm

will terminate prematurely.

Accuracy can be improved in a number of other ways, but

all come at the expense of increased computer run time.

Prediction improves as:

1) the number of weight update iterations is increased.

This has the effect of decreasing the value of the error

function, which implies better "learning" of the training

vectors.

5-1

i 7A -74

2) the number of training vectors is increased. The

5 network seems to gain a better feeling for the overall

structure of the data as the number of samples which it

"learns" is increased.

3) the number of layer one and two nodes is increased

beyond a bare minimum. There may be a point beyond which

increasing the number of hidden layer nodes is unproductive,

but this was not investigated.

5.2 Recommendations

Prediction has been done for years using linear filtering

techniques. Some results with these techniques would

provide useful comparisons of prediction accuracy. Lapedes

and Farber [Lapedes88a:7] claim greater accuracy with

neural network prediction than, for example, Widrow-Hoff

prediction.

The application of neural networks to the prediction of

moving targets should be investigated. Problems where

Markov-3 position processes are currently used are good

candidates.

Equation (2.4), which is actually a pair of inequalities

bounding the number m of network inputs needed by a

predictor network, could be profitably investigated both

erpii c-lly and theoretically. Perhaps the bounds could be

fitted more tightly.

5-2

Computer run time was the most limiting factor in this

research. The most obvious solution to this problem is to

use a faster computer, but other alternatives are possible.

It was felt that the QSD algorithm would reduce run times

- considerably compared to a standard back-propagation

network as described by Lippmann [Lippmann87:17]. It seems

likely that it actually did. However, no attempt was made

to quantify the advantages of the QSD algorithm in terms of

run times. Many minimization algorithms are presented in

numerical analysis texts and elsewhere (for example,

1 [Maybeck88]). A comparative study of the run times required

by different algorithms, perhaps using a simple standard

prediction problem, would be quite valuable. The results

i may suggest a faster algorithm than any which have yet been

applied to the prediction problem. A likely candidate might

be a 2-stage search algorithm which begins by using the QSD

p algorithm and switches, when progress slows, to a Newton-

Raphson technique.

A layer-by-layer, neuron-by-neuron explanation of how

weights actually update to achieve prediction is lacking in

the literature. As described in Chapter 3, a geometric

interpretation of weight updating can provide good initial

estimates of the numbers of hidden layer neurons required

for prediction of sine wave data. The intuition gained from

this interpretation does not extend well to chaotic data.

It was found that surprisingly few neurons are required for

chaotic prediction. An experimental result described in

5-3

Section 4.2 suggests that weights may actually update to

R correspond to frequency components of the input data.

Further investigation along these lines would also be

beneficial.

Finally, the program presented in Appendix C could no

doubt be made more efficient. Care must be taken that

efficiencies thus gained do not result in substantially

reduced understandability or modifiability.

l

5-4

Appendix A: Glass-Mackey Computational Details

Introduction

Derivation details of Glass-Mackey generating algorithms

were omitted in Chapter 3. This appendix supplies those

details.

The Predictor-Corrector Method

Equation (3.1) is restated, then solved, giving Eq (3.2):

At
f(t + At) + f(t) 3 x(t + At) - x(t)

At ax(t+At-r) ax(t-r)
_______- bx(t+At) + ______- bx(t)

2 +x'0 (t+At-r)
l+x 0 (t-r)

x(t + At) - x(t)

U

x(t + At) - x(t) I - .
1 2

+ ax (t+A t-,r) +ax (t-r) - }t+t+ + - bx (t+At)

+ +x' 0 (t+At-r) 1+x' 0 (t-r)

x(t+At) I+_] x(t)

ax(t+At-r) ax(t-r) 1 At

+l+x'0 (t+At-.) l+x' 0 (t-r) 2

A-I

2-bAt At fax(t-r) ax(t+At-r)
* x(t+At) - ~ x(t) + j+

2+bAt 2+bAt l1+x10 (t-r) 1+X10 (t+At-r)l

as desired.

The Integrating Factor Method

Equation (3.3) is here derived, beginning with Equation

(2.1):

dx(t) ax(t-r)
____ ____ ___ - bx(t)

dt 1 + x 1 0 (t-r)

Ldx(t) ax(t-r)
exp(bt) - + b exp(bt) x(t) =exp(bt)

dt 1 + X10 (t-r)

*Letting t =r + kAt (where k is a positive integer) and s

be a dummy variable of integration replacing t,

d[exp(bs)x(s)] ax(s-r)

ds I XIOS-T)exp(bs)

t t
fd[exp(bs)x(s)] f ax(s-.r)

Ids =- exp(bs) ds
I ds j 1 + I(Sr

t
f ax(s--)

exp(bt) x(t) -exp(br) X(r) J + XI(-)exp(bs) ds

t [ax (s-r)
Letting G(s) + =(ST exp(bs) ds,

A-2

x(t) = exp~b(r-t)] x(r) + exp(-bt) G(s)

ak = exp(-bkAt) x(r) + exp(-bt) Gs

Dividing the interval [r,t] into adjacent intervals of width

At, to a good approximation the area represented by G(s) is

a sum of areas of narrow trapezoids:

At-A

{() G(r)+G(r+At) + {G(r+At)+G(r+2At)}

Atr
+ -+ G[r+(k-l)At] + G(-r+kAt)

21

rG(r) G(T+kAt)
-At -+ G(Tr+At) +--- + G[r+(k-1)At] +

Thus

x(t) =exp(-bkAt) x(ir) + At exp(-bt)

t 2~r + G(7r+At) +--- + G[,r+(k-l)At] + 2 Jk~t

x(r+kAt) = exp(-bkAt) x(r) + At exp[-b(r+kAt)]

G-r + G(Tr+At) +--* + G[,r+(k-l)At] + 2(rkt

This final equation is (3.3), as desired.

A-3

Appendix B: The OSD Algorithm

SAs mentioned in Section 3.4.1, Dahl suggested using a

quadratic approximation to an error surface cross section as

a means of reducing the number of steps required to attain

convergence of weights to a minimum value [Dahl87:529]. The

'"Q" in the name QSD Algorithm gives credit to Dr. Dennis

Quinn of AFIT's department of mathematics who outlined the

details of one such approach to the student "S", who here

provides a detailed derivation.

For clarity, a two-dimensional weight space is assured,

but the generalization to weight spaces of arbitrary

dimension is trivial. A generalization is implemented in

the program source code of Appendix C in the body of the

network training package.

Figure B.1 shows a contour representation of weight

Ii

W 2

-------- I

-

Figure B.1 Error Surface Contours

B-1

L

space. The minimizing procedure starts with a point Po -

* (W,(0),W2 (0)) at time zero. This point is chosen randomly

but in such a way that both components are small enough to

avoid sigmoidal saturation when applied to a neuron.

- Sigmoidal saturation occurs when a neuron's output value is

very near either zero or one; it can lead to numerical

difficulties and poor network performance.

The general approach is to evaluate E and vE at P0 and,

moving in the direction of vE according to a quadratic

approximation of E, find two additional potentially

minimizing points PI and P2 - The point P, corresponding to

the minimum of the set {E(P 0),E(P,),E(P2)) becomes the next

point P0 for which a new gradient is found and from which

the algorithm continues in its search for an error surface

minimum. The algorithm stops when consecutive initial

points P. and P.+1 are within some small predetermined

* distance of each other in weight space.

The gradient vE(P0) is a vector which determines a plane

perpendicular to the (W,,W 2) plane. A cross section of

E(W,,W 2) in this perpendicular plane is labeled E(A) in

Figure B.2. The points P0 , P,, P2, and PM are here

understood to be points in the (W1 ,W2) plane which lie on

the A axis.

Points Q on the A axis admit two equivalent

representations. A point Q may be represented by a scalar

where

B-2

PO
/

A
PO P P 2 ~ M

Figure B.2 When a Quadratic Approximation Minimizes E

F dE
Q P() - 0 (PO)

dA

and Q itself is a scalar corresponding to a location on the

U/

A axis. Alternately, Q may be considered a point in (W,1W2)

space given by a scalar and the vector equation

Q = RO- A E (RO)

In both representations, Q approaches P0 as 0 (or)

approaches zero. The latter representation is of practical

importance in updating weights, but sometimes the former is

more enlightening. In general, the P1 are understood to be

points in (W1,W2) space and the vector notation is omitted.

As illustrated in Figure 3.8, for small positive numbers

0b, E(Q) < E(P.). Given P., therefore, a small positive

number A, is chosen and the point P1 is determined by P1

P0 - A1 vE(P 0) .

B- 3

In practice, the small positive number A. corresponds to -

U in the vector equation Q = 10 - vE(1 0). It is touna by

trial and error, based on network performance, and values

between 1.5 and 3 seemed to work best with most chaotic time

series data.

It is best to pick A, smaller than essential, as

illustrated in Figure B.2, to ensure that E(P,) < E(P0) in

most cases. The values E(P,) a E, and E(P0) A E0 are

computed on the basis of actual network outputs as indicated

in Equation (3.5) and are true error function values. But

using these values, it may be possible to estimate the

location of a point PM on the A axis which minimizes the

value of E in the cross section. To this end, approximate E

U as a quadratic function of the variable A by the equation E

= a + #A + jA 2. The parameters a, P, and I can be

determined, the derivative of E set to zero, and the value

5L of A which solves this equation will correspond to an

extremum (hopefully a minimum) of the quadratic

approximation to E. This value of a corresponds to the

point labeled P2 in Figure B.2.

Points P along the A axis are given by P = P0 - A vE(P0).

This relationship defines a metric on A and allows the

explicit representation E(P) = E[P 0 - A vE(P0)]. The

function E may be considered a function of A(W,,W 2); the

variable A is actually a function of W, and W2. Conversely,

W, and W2 may be considered functions of A, since P = P0 - A

vE(PO) may be written as the pair of equations

B-4

awl

aE
W2 (P) = W2 (A) = W2 (P 0) - A-- (PO)

aw2

where W1 (P) denotes the ith weight component of P.

It is thus meaningful to write E = E(P) =E(A)

E[A(WlfW 2)) = E[W 1 (A),W 2 (A)] =a+ PA + -yA. Choosing P. to

lie at the origin of the A axis, a may be determined simply

by E(P0) = E[P0 - 0 vE(P0)I E(O) = a = E0 . Finding P~ and

r -I will require an examination of the derivative of E with

respect to A.

Invoking the chain rule,

*dE aE dc9 E dW2
- __ - + - - = P +2-yA

dA awl dA 8W2 dA

dW1 aE
*But - is simply the constant - - (PO), and

dA awl

dW2 aE dE
is the constant - - (PO). Evaluating - at

dA aW 2 dA

P0 (that is, at A = 0),

[E (0 2 - E 2

al w{ aW2

which can be written more simply as ~B=-IvE(P,)12

Thus E(A) a + #A + 7yA2 = E0 - IvE(P0) 1
2 A + -yA 2 This

may be solved at A = A1 to obtain

B-5

E, -Eo + lVE(Po)1 2 Al

A 2

All the parameters of the quadratic approximation have now

been obtained. Setting the derivative of E(A) to zero and

W solving for the variable A now gives the parameter A2 of the

potential minimizing point P2 :

Als 2 1E(Po) 12

2 [E1 - Eo + IVE(P o)12 A,)]2 2

This point P2 is given by P2 = Po - A2 VE(P0). If E is

concave downward near P0 , this may represent a maximizing

rather than a minimizing value. Figure B.3 illustrates this

iP AI ,) A

P2 PO P1 PM

Figure B.3 When a Quadratic Approximation Maximizes E

situation. The QSD algorithm thus takes the point P,

corresponding to the minimum of the set of values

(E(P0),E(Pj),E(P 2)} as the next initial point P0. It

terminates when any two consecutive starting points P. and

B-6

P,+l are within a predetermined small distance of each

m other.

B-7

Appendix C: Ada Source Code

U
This appendix contains the Ada code which implements the

predictor network developed in this thesis. The code was

hosted on a VAX 11-780 computer located in the Information

Sciences Laboratory at AFIT.

The Ada packages are presented in order of visibility,

beginning with the main procedure, JIMSPNET. The order of

visibility may be determined from Figure 3.20. Package

specifications are always presented immediately before the

rcorresponding package bodies.
In experimenting with new data streams, it is typically

necessary to adjust several network parameters to obtain

good results. The package TRAININGPACKAGE contains three

such parameters. Parameter Al is the initial step size used

by the QSD algorithm. As the number of network nodes

increases, Al should generally be reduced. Parameter

MAXITERS is the upper bound on the number of weight updates

performed. More accurate predictions usually result Rs

MAXITERS is increased (the error surface value is driven

lower), but large MAXITERS values require a great deal of

computer run time. The parameter WTSCLOSE is a termination

criterion; when updated weight coordinates are within

Euclidean distance WTSCLOSE of the weight coordinates

immediately preceding them, training ceases. For

experimentation, WTSCLOSE was usually assigned a very small

C-1

value so that training would terminate only after MAXITERS

! updates.

Package NETWORKPACKAGE contains the parameter uwidth

which determines how close the initial random weights are to

zero. Usually u_width values near 1.6 gave good results.

Very large values of u width (ten or above) often cause the

network output to quickly stabilize at a constant value,

regardless of variations in input data.

C-2

U

,. C-2

with NEURONPACKAGE; use NEURONPACKAGE;
with NETWORKPACKAGE; use NETWORKPACKAGE;
with TRAININGPACKAGE; use TRAININGPACKAGE;
with PREDICTIONPACKAGE; use PREDICTIONPACKAGE;

procedure JIMSPNET is
--This is the highest level controller procedure of the
--predictor network. It first obtains from an input file
--named PARAMS the numbers NO,Nl, and N2 of neurons in
--the input, first, and second layers respectively. It
--obtains from the same file the number NBR TVS of
--training vectors to be used and the number NBRPVS of
--time series values to be predicted. Procedure
--GETPARAMS does all of this. The sizes of the various
--network arrays are then declared, as well as the size
--of the one-dimensional arrays X and X PRED which hold
--actual and predicted time series values.

--It was written by Jim Stright at AFIT in August 1988.

NO,NI,N2,NBRTVS,NBRPVS :positive;
MAX2,MAX3 :positive;
DESIRED OUT :float; --last trng vector comp.
VALUE :float; --value of partial der.

--of error function
GRADSQ :float; --square of error fctn

--gradient
ERROR :float; --value of error fctn at

--a point in wt. space
begin

GETPARAMS(NO,NI,N2,NBRTVS,NBRPVS);

* --set MAX2 = max{Nl,N2)
if Nl > N2 then

MAX2:= NI;
else

MAX2:= N2;
end if;

--set MAX3 = max(NO,Nl,N2)
if NO > MAX2 then

MAX3:= NO;
else

MAX3:= MAX2;
end if;

declare
--The following three array types are indexed to
--specify a particular node in the network. The
--first element of each array denotes the layer
--number in which the node occurs. The second
--element is the number of the node within that layer
-- (the nodes are numbered from left to right). If

C-3

--the third element is zero (in the case of
--WEIGHT TYPE), the weight is a threshold. Otherwise
--the third element denotes a connection to the node
--or input with this number in the layer below.

W,Wl,W2,WH:WEIGHTTYPE(l..3,1..MAX2,0..MAX3);
I: INPUT TYPE(I..3,1..MAX2,1..MAX3);
0: OUTPUTTYPE(l..3,1..MAX2);

--The network has NO inputs:
NETIN: NETINPUTTYPE(l..NO);

--It is necessary to supply a total of
--NO+NBR TVS+NBR PVS time series values for
--comparison to predicted values XPRED.
X,XPRED: TSVALUES(O..NO+NBRTVS+NBRPVS-);

--Procedure SET INITWTS assigns initial values to all of
--the weights in the network. GET TSVALUES loads the
--the one dimensional array X sequentially with points of

V --the time series taken from an input file GMCDATA.
--Starting at the initial weights, TRAIN finds a point in
--weight space which minimizes the value of the error
--function determined by the training vectors (which are

--extracted from the X array). An output file TRNDATA
U --saves certain values obtained in the training process

--for possible use in tuning the network. Using the
--final weights from TRAIN, PREDICT sends network output
--values sequentially to the array XPRED and lists them
--in an output file named PRVALS.

begin
SET INIT WTS(N,Nl,N2,W);
GETTS VALUES(NO,NBRTVS,NBRPVS,X,X_PRED);
TRAIN(NO,NI,N2,NBR_TVS,X,W,W1,W2,WH,NET IN,1,0,

DESIREDOUT,VALUE,GRADSQ,ERROR);
PREDICT(N0,NI,N2,NBRTVS,NBRPVS,X,W,XPRED,

NETIN,O,I);
end; --of declare block

end JIMSPNET;

C-4

with NETWORK PACKAGE; use NETWORKPACKAGE;
hwith NEURON_PACKAGE; use NEURON_PACKAGE;

package PREDICTIONPACKAGE is

procedure GETPREDVECTOR(PCT,N0,NBR TVS: in positive;
X-PRED: in TSVALUES;
NETIN: out NETINPUTTYPE);

procedure PREDICT(NO,N1,N2,NBR_TVS,NBRPVS: in positive;

X: in TSVALUES;
W: in WEIGHTTYPE;
X PRED: in out TSVALUES;
NETIN: in out NET INPUT TYPE;
0: in out OUTPUT TYPE;
I: in out INPrTTTYPE);

end PREDICTIONPACKAGE;

C-5

with system;
with text io; use text io;
with float text io; use float text io;
with integer text io; use integer_text io;

package body PREDICTIONPACKAGE is

procedure GETPREDVECTOR(PCT,N0,NBRTVS: in positive;
X PRED: in TSVALUES;
NETIN: out NETINPUTTYPE) is

--Gets prediction vector number P_CT and enters it in
--the NETIN array.

begin
for Cl in 1..N0 loop

NETIN(Cl):= X PRED(NBRTVS + PCT + C1 - 2)/2.0;
--Division by 2 keeps network inputs in the range
--[0,1] since all time series values are in the
--range [0,2].

r. Tend loop;

end GETPREDVECTOR;

procedure PREDICT(NO,Nl,N2,NBRTVS,NBRPVS: in positive;
X: in TS VALUES;
W: in WEIGHTTYPE;
X PRED: in out TS VALUES;
NETIN: in out NET INPUT TYPE;
0: in out OUTPUT TYPE;
I: in out INPUTTYPE) is

--Makes table in PRVALS of actual versus predicted values
--based on trained weights in the W array. The first
--prediction vector which GETPREDVECTOR assigns to the
--NET IN array has time series point number NBR TVS as
--its first component and time series point number
--NBRTVS+NO-l as its last component. Procedure
--COMPUTE NETWORK OUTPUT then provides the first
--predicted value, which occurs at time series point
--number NBRTVS+NO. The loop steps this process across
--NBRPVS training vectors.

OUTFILE: text io.file type;
begin

create(OUTFILE,out_file,"PRVALS");
put(OUTFILE," --T--'); setcol(OUTFILE,15);
put(OUTFILE," --X(T)--"); set_col(OUTFILE,30);
put(OUTFILE," --XPRED(T)--");
newline(OUTFILE);
for Cl in I..NBRPVS loop

GET PREDVECTOR(Cl,No,NBRTVS,X_PRED,NET_IN);
COMPUTEN TWORKOUTPUT(NO,N1,N2,NETIN,W,I,O);
X_PRED(NO + NBRTVS - 1 + Cl):= O(3,1)*2.0;

C-6

--Multiplication by 2 restores time series values
--(which had been divided by 2 at the network
--inputs) to their original range of [0,2].

put(OUTFILE,NO + NBR_-TVS - 1 + Cl);
set -col(OUTFILE,15);
put(OUTFILE,X(NO + NBR_-TVS - 1 + Cl));
set -col(OUTFILE,30);

- put(OUTFILE,XPRED(NO+ NBRTVS -1 + Cl));

new-line(OUTFILE);
end loop;
close (OUTFILE);

end PREDICT;

end PREDICTIONPACKAGE;

L

C-7

with NEURON PACKAGE; use NEURONPACKAGE;
with NETWORKPACKAGE; use NETWORKPACKAGE;
with ERR SURF PACKAGE; use ERR SURF PACKAGE;

package TRAININGPACKAGE is
procedure PARTDERLYR3(NODEBEL: in natural;

NO,NI,N2,NBRTVS: in positive;
X: in TSVALUES;
NETIN: in out NET INPUTTYPE;
W: in WEIGHT TYPE;
I: in out INPUT TYPE;
0: in out OUTPUTTYPE;
DESIRED OUT: in out float;

[] VALUE: out float);

procedure PARTDERLYR2(NODE: in positive;
NODE BEL: in natural;
NO,Nl,N2,NBR TVS: in positive;
X: in TSVALUES;
NETIN: in out NETINPUTTYPE;
W: in WEIGHT TYPE;
I: in out INPUT TYPE;
0: in out OUTPUTTYPE;
DESIRED OUT: in out float;
VALUE: out float);

procedure PARTDERLYRl(NODE: in positive;
NODEBEL: in natural;
NO,NI,N2,NBR_TVS: in positive;
X: in TSVALUES;
NETIN: in out NETINPUTTYPE;
W: in WEIGHTTYPE;
I: in out INPUT TYPE;
0: in out OUTPUTTYPE;
DESIRED OUT: in out float;
VALUE: out float);

procedure FIND_P1(NO,Nl,N2,NBRTVS: in positive;
X: in TSVALUES;
NETIN: in out NETINPUTTYPE;
W,Wl: in out WEIGHTTYPE;
I: in out INPUT TYPE;
0: in out OUTPUTTYPE;
DESIREDOUT,VALUE: in out float);

procedure FINDP2(NO,Nl,N2,NBRTVS: in positive;
X: in TSVALUES;
NETIN: in out NET INPUTTYPE;
W,W2: in out WEIGHT TYPE;
I: in out INPUT TYPE;
0: in out OUTPUT TYPE;
DESIREDOUT,VALUE: in out float);

C-8

procedure MOVEWTVALS(NO,Nl,N2: in positive;
WTSl: in WEIGHT TYPE;
WTS2: out WEIGHTTYPE);

procedure COMPUTEGRADSQ(N0,N,42,NBRTVS: in positive;
X: in TSVALUES;
NETIN: in out NET INPUTTYPE;
W: in WEIGHTTYPE;
I: in out INPUTTYPE;
0: in out OUTPUTTYPE;
DESIRED OUT,VALUE:in out float;
GRADSQ: out float);

function DISTTOPT(N0,NI,N2: in positive;
- W,WTS: in WEIGHT_TYPE) return float;

procedure TRAIN(N0,N1,N2,NBRTVS: in positive;
X: in TS VALUES;
W,Wl,W2,WH: in out WEIGHTTYPE;
NET IN: in out NETINPUTTYPE;
I: in out INPUTTYPE;
0: in out OUTPUTTYPE;
DESIREDOUT,VALUE,GRADSQ,ERROR: in out

float);

end TRAININGPACKAGE;

C-9

with system;
with float math lib; use float math lib;
with math -ib extension; use math lib extension;
with text io; use text io; -j
with float text io; use float text io;
with integer-textio; use integertext io;

package body TRAININGPACKAGE is

Al :float:=0.1; --step size to point P1
A2 :float; --step size to point P2
A2D :float; --denominator of A2
EO :float; --error value at P0
E0_1ST :float; --initial error value at P0
El :float; --step #1 error value
E2 :float; --step #2 error value
MAXITERS :natural:=400; --max nbr of weight updates
IT CT :natural:=O; --counts nbr of weight updates
WTSCLOSE :float:=l.OE-20; --termination criterion

procedure PARTDERLYR3(NODEBEL: in natural;
NO,NI,N2,NBR TVS: in positive;
X: in TS VALUES;
NETIN: in out NET INPUTTYPE;
W: in WEIGHT TYPE;
I: in out INPUTTYPE;
0: in out OUTPUT TYPE;
DESIREDOUT: in out float;
VALUE: out float) is

--Finds VALUE of partial derivative of error function wrt
--a particular layer 3 weight W(3,1,NODE_BEL)
--at the point W in weight space.

SUM :float:=O.O;
begin

for Ii in I..NBR TVS loop
GETTRNGVECTOR(11,NO,X,NETIN,DESIREDOUT);
COMPUTE NETWORK OUTPUT(NO,NI,N2,NETIN,W,I,O);
--Also computes intermediate outputs of neurons
--throughout the network.

if NODEBEL = 0 then
SUM:= SUM - (0(3,1)-DESIREDOUT)*0(3,1)
else ,(l.0 - 0(3,1)) ;else -
SUM:= SUM + (0(3,1)-DESIREDOUT)*0(3,1)

*(1.0-O(3,1))*I(3,I,NODE_BEL);
end if;

end loop;
VALUE:= 2.0 * SUM;

end PARTDERLYR3;

procedure PARTDERLYR2(NODE: in positive;

C-10

NODE BEL: in natural;
NO,NI,N2,NBRTVS: in positive;

* X: in TSVALUES;
NETIN: in out NETINPUT TYPE;
W: in WEIGHT TYPE;
I: in out INPUTTYPE;
0: in out OUTPUTTYPE;
DESIRED OUT: in out float;
VALUE: out float) is

--Finds VALUE of partial derivative of error function wrt
--a particular layer 2 weight W(2,NODE,NODEBEL)
--at the point W in weight space.

SUM :float:=O.O;
begin

for Ii in 1..NBRTVS loop
GETTRNGVECTOR(I1,NO,X,NET IN,DESIRED OUT);
COMPUTE NETWORK OUTPUT(NO,N1,N2,NET INW,I,O);
--Also computes intermediate outputs of neurons
--throughout the network.

if NODEBEL = 0 then
SUM:= SUM - (0(3,1)-DESIREDOUT)*O(3,1)

*(i.0-0(3,1))*W(3,1,NODE)*I(Z,i,NODE)
*(i.0-I(3,1,NODE));

else3 SUM:= SUM + (0(3,1)-DESIREDOUT)*0(3,1)
*(1.0-0(3,I))*W(3,i,NODE)*I(3,1,NODE)

end if; *(i.0-I(3,l,NODE))*I(2,NODE,NODE_BEL);

end loop;
VALUE:= 2.0 * SUM;

end PART DER LYR2;

procedure PARTDER LYR(NODE: in positive;
NODEBEL: in natural;
NO,N1,N2,NBRTVS: in positive;
X: in TSVALUES;
NETIN: in out NET INPUTTYPE;
W: in WEIGHT TYPE;
I: in out INPUTTYPE;
0: in out OUTPUTTYPE;
DESIRED OUT: in out float;
VALUE: out float) is

--Finds VALUE of partial derivative of error function wrt
--a particular layer 1 weight W(1,NODE,NODE_BEL)
--at the point W in weight space.

SUM1 :float:=O.O;
SUM2,SUM3 :float;

begin
for Il in 1..NBR TVS loop

GETTRNGVECTOR(Il,NO,X,NETIN,DESIREDOUT);

C-Il

COMPUTENETWORKOUTPUT(NO,N1,N2,NET_IN,W,I,O);

--Also computes intermediate outputs of neurons
--throughout the network.

SUM2:= 0.0;
for 12 in 1..N2 loop

if NODEBEL = 0 then
SUM3:= -W(2,12,NODE) *I(2,I2,NODE)

*(l.O-I(2,12,NODE));
else

SUM3:= 0.0;
for 13 in 1..N1 loop

SUM3:= SUM3 + W(2,I2,13)*I(2,I2,I3)
*(1.0-I(2,I2,I3))*I(1,NODE,NODEBEL);

end loop;
end if;
SUM2:= SUM2 + W(3,l,12)*I(3,l,12)

*(1.0-I(3,1,I2))*SUM3;
r end loop;

SUMl:= SUMi + (0(3,1)-DESIRED_-OUT) *0(3,1)
*(l.0-O(3, 1)) *SUM2;

end loop;
VALUE:= 2.0 * U1

end PARTDERLYRl;

U procedure FIND_Pl(NO,N1,N2,NBRTVS: in positive;
X: in TSVALUES;
NETIN: in out NETINPUTTYPE;
W,Wl: in out WEIGHTTYPE;
I: in out INPUTTYPE;
0: in out OUTPUTTYPE;
DESIREDOUT,VALUE: in out float) is

--Finds weight space coords PI of 1st update estimate.
--Weights are updated from the top layer (first) to the
--bottom layer (last).

begin
for Cl in O..N2 loop

PARTDERLYR3(C1,NO,N1,N2,NBRTVS,X,NET_IN,W,I,O,
DESIREDOUT,VALUE);

Wl(3,l,Cl):= W(3,l,ClT - Al*VALUE; --VALUE of der
W(3,1,Cl):= W1(3,1,Cl); --sets wts for use by

--PART_-DERLYR2 and
--PARTDERLYRi

end loop;
for Cl in 1..N2 loop

for C2 in 0. .N1 loop
PARTDERLYR2(Cl,C2,NO,N1,N2,NBRTVS,X,NET_IN,

W,I,O,DESIRED_-OUT,VALUE);
Wl(2,Cl,C2):=W(2,Cl,C2)-Al*VALUE; --VALUE of der
W(2,C1,C2):= Wl(2,C1,C2); --sets wts for LYRi

--use by PARTDERLYRl

C-12

en op
end loop;

end loop; .. l oo
U for C in l..N loop

PARTDER LYRl(Cl,C2,NO,N1,N2,NBRTVS,X,NET_IN,
W,I,O,DESIREDOUT,VALUE);

Wl(l,Cl,C2):=W(l,Cl,C2)-Al*VALUE; --VALUE of der
W(l,Cl,C2):= W1(l,ClC2);

- end loop;
end loop;

end FINDP1;

procedure FINDP2(NO,N1,N2,NBRTVS: in positive;
X: in TSVALUES;
NETIN: in out NETINPUTTYPE;
W, W72: in out WEIGHTTYPE;
I: in out INPUT_TYPE;
0: in out OUTPUTTYPE;
DESIREDOUT,VALUE: in out float) is

--Finds weight space coordis P2 of 2nd update estimate.
--Weights are updated from the top layer (first) to the
--bottom layer (last).

begin
for C1 in 0. .N2 loopg PARTDERLYR3(Cl,NO,Nl,N2,NBRTVS,X,NETIN,W,I,O,

DESIREDOUT, VALUE);
W2(3,l,Cl):= W(3,1,Cl) -Al*VALUE; --VALUE of der
W(3,l,Cl):= W2(3,l,Cl); --sets wts for use by

--PARTDERLYR2 and
--PARTDERLYR1

end loop;
P'. for Cl in l..N2 loop

for C2 in 0..N1 loop
PARTDER LYR2(C1,C2,NO,N1,N2,NBRTVS,X,NETIN,

W,I,O,DESIREDOUT,VALUE);
W2(2,Cl,C2):=W(2,Cl,C2)-A2*VALUE; --VALUE of der
W(2,Cl,C2):= W2(2,Cl,C2); --sets wts for LYRi

--use by PARTDERLYRi
end loop;

end loop;
for Cl in l..Nl loop

for C2 in O..NO loop
PART_DER_LYR1(C1,C2,NO,N1,N2,NBR_TVS,X,HETIN,

W,I,O,DESIREDOUT,VALUE);
W2(l,Cl,C2):=W(l,Cl,C2)-A2*VALUE; --VALUE of der
We(l,C1,C2):= W2(1,Cl,C2);

end loop;
end loop;

end FINDP2;

procedure MOVE_WT_ VALS(NO,Nl,N2: in positive;
WTSl: in WEIGHTTYPE;

C- 13

WTS2: out WEIGHTTYPE) is
--In procedure TRAIN, it is sometimes necessary to move

! --weight space coordinates to an array with a different
--name. This proc. moves the weights in WTSI to WTS2.

begin
for C1 in 0..N2 loop

WTS2(3,l,Cl):= WTSI(3,I,Cl);
end loop;

-- for Cl in 1..N2 loop
for C2 in O..Nl loop

WTS2(2,CI,C2):= WTSl(2,CI,C2);
end loop;

end loop;
- for Cl in 1..N1 loop

for C2 in 0..NO loop
WTS2(e,Cd,C2):= WTSI(,CI,C2);

end loop;end loop;

end MOVEWTVALS;

procedure COMPUTEGRADSQ(NO,N1,N2,NBRTVS: in positive;
X: in TSVALUES;
NETIN: in out NET INPUTTYPE;
W: in WEIGHT TYPE;
I: in out INPUT TYPE;
0: in out OUTPUTTYPE;
DESIRED OUT,VALUE:in out float;
GRAD SQ: out float) is

--Finds square of gradient GRADSQ at point PO by summing
--the squares of all partial derivatives.

TEMP:float:=0.O;
begin

for Cl in 0..N2 loop
PARTDERLYR3(CI,NO,NI,N2,NBRTVS,X,NETIN,W,I,O,

DESIREDOUT,VALUE);
TEMP:= TEMP + VALUE**2;

end loop;
for Cl in 1..N2 loop

for C2 in O..Nl loop
PARTDERLYR2(CI,C2,NO,N1,N2,NBR_TVS,X,NET_IN,

W,I,O,DESIREDOUT,VALUE);
TEMP:= TEMP + VALUE**2;

L end loop;
end loop;
for Cl in 1..N1 loop

for C2 in 0..N0 loop
PARTDERLYRI(CI,C2,NO,N1,N2,NBR_TVS,X,NET_IN,

W,I,O,DESIREDOUT,VALUE);
TEMP:= TEMP + VALUE**2;

end loop;
GRADSQ:= TEMP;

C-14

end loop;
kend COMPUTEGRADSQ;

function DISTTO PT(NO,N,N2: in positive;
W,WTS:in WEIGHTTYPE) return float is

--Finds Euclidean distance from P0 (W) to P1 or P2 (WTS).

TEMP:float:=0.O;
begin

for Cl in 0..N2 loop
TEMP:= TEMP + (WTS(3,I,Cl) - W(3,1,Cl))**2;

end loop;
for C1 in 1..N2 loop

for C2 in 0..N1 loop
TEMP:=TEMP+(WTS(2,Cl,C2)-W(2,Cl,C2))**2;

end loop;
end loop;
for Cl in l..N1 loop

for C2 in 0..NO loop
TEMP:=TEMP+(WTS(I,Cl,C2)-W(I,Cl,C2))**2;

_ Iend loop;
end loop;
return sqrt(TEMP);

end DISTTOPT;

procedure TRAIN(NO,NI,N2,NBRTVS: in positive;
X: in TSVALUES;
W,W1,W2,WH: in out WEIGHT TYPE;
NETIN: in out NET INPUTTYPE;
I: in out INPUT TYPE;
0: in out OUTPUTTYPE;
DESIREDOUT,VALUE,GRADSQ,ERROR: in out

float) is
--Starts at initial point P0 from procedure SETINITWTS
--and ends with trained weights in W array.

OUTFILE: textio.file type;
begin

create(OUTFILE,out_file,"TRNDATA");
put line(OUTFILE,"W(2,1,1) at steps of 400 iters");
while ITCT < MAXITERS loop

if IT CT mod 400 = 0 then
put(OUTFILE,W(2,l,1)); new_line(OUTFILE);

end if;
--Will result in every 400th update of W(2,1,1)
--being output to show typical weight updating
COMPUTEERROR(NO,N1,N2,NBRTVS,X,W,NETIN,I,O,

DESIREDOUT,ERROR);
--Computes network ERROR based on all training
--vectors at the point P0 corresponding to the
--current point W in weight space.

EO:=ERROR;

C-15

if IT CT 0 then
EO ST:= EO;

end if;
--EO IST is the initial error function value. It's
--extracted here and later output in file TRNDATA
--for convenience in monitoring network performance

MOVEWTVALS(NO,Nl,N2,W,WH); --from W array to
--WH array

FIND P1 (NO,Nl,N2 ,NBR_TVS,X,NETIN,W,WlI,,
DESIRED_-OLTTVALUE);

--Finds all P1 coords. and moves them into W array

COMPUTEERROR(NO,NI,N2,NBRTVS,X,W,NETIN,I,O,
DESIRED OUT,ERROR);

--Computes network ERROR based on all training
--vectors at the point P1 corresponding to the
--current point W in weight space.

El:=ERROR;
MOVE_WT_VALS(NO,N1,N2,WH,W); --from WH array to

--W array
COMPUTEGRADSQ(NO,NI,N2,NBRTVS,X,NETIN,W,I,O,

DESIREDOUT,VALUE,GRADSQ);
--Finds the value GRAD_SQ of the square of the
--gradient of the error surface at the point P0.

SIif GRAD SQ = 0.0 then exit;
--In this case, P0 is at least a local extremum.

end if;
A2D:= 2.0 * (El - EO + GRADSQ * Al);

. if A2D = 0.0 then
A2:= Al;

-- In the unlikely case that El - EQ + GRADSQ * Al
-- = 0, necessarily El < EQ. A2:= Al makes P1 = P2
--and the next minimum is El.

else
A2:= GRADSQ * (Al**2)/A2D;

--This A2 is the most commonly used value for the
--step size to the extremum of the quadratic
--approximation to the error surface cross section.

end if;
MOVEWTVALS(NO,N1,N2,W,WH); --from W array to

--WH array
FINDP2(NO,Nl,N2,NBRTVS,X,NETIN,W,W2,I,O,

DESIRED_OUT,VALUE);
--Finds all P2 coords. and moves them into W array

COMPUTE_ERROR(NO,N1,N2,NBR_TVS,X,W,NETIN,I,O,
DESIREDOUT,ERROR);

C-16

--Computes network ERROR based on all training
--vectors at the point P2 .;orresponding to the
--current point W in weight space.

E2 :=ERROR;
MOVE_WT_VALS(NO,Nl,N2,WI,W); --from W11 array to

--W array
if (El<=EO and El<=E2) and

DIST_-TOPT(NO,Nl,N2,W,Wl) > WTSCLOSE
then MOVE_-WT_-VALS(NO,Nl,N2,Wl,W)J;

--In this case, El is the minimum value and Pi
--(stored in WI) is far from P0 (stored in W).
--MOVEWTVALS moves Wi to W so that P1 becomes
--P0 in the next iteration.

elsif (E2<=EQ and E2<=El) and
DIST-_TOPT(NO,N,N2,W,W2) > WTSCLOSE
then MOVE_WT_VALS(NO,Nl,N2,W2,W);

--In this case, E2 is the minimum and P2 (stored in
--W2) is far from P0 (stored in W). MOVEWTVALS
--moves W2 to W so that P2 becomes P0 in tEhe next
--iteration.

else
--Now either EQ is minimum or weights are close.
--Notice that too large an initial step size Al
--could result in the undesirable condition where
--E0 is not close to an error surface minimum yet
--still EQ < El and EQ < E2.

exit;
end if;
ITCT:= ITCT + 1;

end lo0op;

--Provide remarks in file named TRNDATA to monitor
--training:
put line(OUTFILE,"Final value of W(2,1,1) was"t);
put(OUTFILE,W(2,l,l)); new line(OUTFILE);
put line(OUTFILE,"Nbr of wt. updates performed was");
put(OUTFILE,IT CT); new line(OUTFILE);
put line(OUTFI'LE,"Final value of W(1,1,0) was");
put(OUTFILE,W(l,l,0)); new -line(OUTFILE);
put -line(OUTFILE, "Final value of W(l,Nl,NO) was");
put(OUTFILE,W(l,Nl,NO)); new -line(OUTFILE);
put(OUTFILE,"Distance from PO to P1 was");
new -line(OUTFILE);
put(OUTFILE,DISTTOPT(NQ,N1,N2,WH,Wl));
new -line(OUTFILE);
put(OUTFILE,"Distance from P0 to P2 was"l);

* new line(OUTFILE);
put(OUTFILE,DISTTOPT(NO,Nl,N2,WH,W2));
new -line(OUTFILE);
put(OUTFILE,"Original error value was");

C- 17

new line(OUTFILE);
*put(OUTFILE,EO_1ST); new -line(OUTFILE);

put(OrJTFILE,"Final error value was");
new -line(OUTFILE);
put(OUTFILE,EO);
close(OUTFILE);

end TRAIN;
end TRAININGPACKAGE;

C-18

with NEURON PACKAGE; use NEURON PACKAGE;
with NETWORKPACKAGE; use NETWORKPACKAGE;

package ERRSURFPACKAGE is
procedure GETTRNGVECTOR(TVNBR,NO: in positive;

X: in TSVALUES;
NETIN: out NETINPUTTYPE;
DESIREDOUT: out float);

procedure COMPUTEERROR(HO,N1,N2,NBRTVS: in positive;
X: in TS VALUES;
W: in WEIGHT TYPE;
NETIN: in out NET INPUTTYPE;
I: in out INPUTTYPE;
0: in out OUTPUT TYPE;
DESIRED OUT: in out float;
ERROR: out float);

end ERRSURFPACKAGE;

r

C-19

with system;
with float math lib; use float math lib:
with math_lib_extension; use mathlibextension;

package body ERRSURFPACKAGE is

procedure GETTRNGVECTOR(TVNBR,NO: in positive;
X: in TS VALUES;
NETIN: out NETINPUTTYPE;
DESIREDOUT: out float) is

--Assigns the first NO components of training vector
--number TVNBR sequentially to the network inputs, and
--assigns the last component to the variable DESIREDOUT.
--Since all time series values fall between 0 and 2, it
--divides each component by 2 to enforce a normalized
--range of 0 to 1 (the sigmoidal network output is always
--in this range).

begin
for C1 in 1..NO loop

NET IN(C1):= X(TV NBR + C1 - 2)/2.0;
end loop;
DESIREDOUT:= X(TVNBR + NO - 1)/2.0;

end GETTRNGVECTOR;

procedure COMPUTEERROR(NO,N1,N2,NBRTVS: in positive;
X: in TSVALUES;
W: in WEIGHT TYPE;
NETIN: in out NET INPUTTYPE;
I: in out INPUT TYPE;
0: in out OUTPUT TYPE;
DESIREDOUT: in out float;

mERROR: out float) is
--Computes the network ERROR at point W based on all
--training vectors.

SUM :float:= 0.0;
SQTERM :float;

begin
for C1 in l..NBRTVS loop

GET TRNG VECTOR(CI,NO,X,NETIN,DESIRED OUT);
COMPUTE_NETWORKOUTPUT(NO,N1,N2,NETINW,I,O);
SQ_TERM:= (0(3,1) - DESIREDOUT)**2;
SUM:= SUM + SQ_TERM;

end loop;
ERROR:= SUM;

end COMPUTEERROR;

end ERRSURFPACKAGE;

C-20

with NEURONPACKAGE; use NEURONPACKAGE;

package NETWORKPACKAGE is
type TSVALUES is array(natural range <>) of float;
type NET INPUT TYPE is array(positive range <>) of float;
procedure GETPARAMS(NO,NI,N2,NBRTVS,NBR_PVS: out

positive);
procedure SETINITWTS(NO,NI,N2: in positive;

W: out WEIGHTTYPE);
procedure GETTSVALUES(N0,NBRTVS,NBRPVS: in positive;

X: in out TSVALUES;
X_PRED: out TSVALUES);

function NEURONOUTPUT(NO,N1,N2,LAYER,NODE: in positive;
W: in WEIGHT TYPE;
I: in INPUTTYPE) return float;

procedure COMPUTENETWORKOUTPUT(NO,Nl,N2: in positive;
NETIN: in

NET_ INPUTTYPE;
W: in WEIGHT TYPE;
I: in out INPUT TYPE;
0: out OUTPUTTYPE);

end NETWORKPACKAGE;

C-21

with system;
with text io; use text io;
with integertext io; use integer textio;
with float text io; use float text io;
with float math-lib; use float-math-lib;
with math_lib_extension; use mathlibextension;

package body NETWORKPACKAGE is

procedure GETPARAMS(NO,NI,N2,
NBR TVS,NBR PVS: out positive) is

--Gets five constant positive integers from the input
--file PARAMS. NO, N1, and N2 are the numbers of neurons
--in the input, first, and second network layers,
--respectively. NBR TVS is the number of training
--vectors used, and NBR PVS is the number of time series
--values to be predicted.

INFILEI: text io.file type;
begin

open(INFILE,in_file,"PARAMS"l);
get(INFILEl,NO); skipline(INFILEl);
get(INFILEl,Nl); skipline(INFILEl);
get(INFILEI,N2); skipline(INFILEl);
get(INFILEl,NBRTVS); skipline(INFILEl);
get(INFILEl,NBR PVS); skipline(INFILEl);
close(INFILEI);

end GETPARAMS;

procedure SETINITWTS(NO,Nl,N2: in positive;
W: out WEIGHTTYPE) is

--Sets initial weights to values near zero.

seed :system.unsignedlongword:= get-seed;
u center :constant:=O.O;
u width :constant:=l.6;

begin
for C1 in 1..N1 loop --set LYRI init weights and

--thresholds to values within
--u width of 0

for CO in 0..NO loop
uniform(u_center,u_width,seed,W(l,Cl,CO));

end loop;
end loop;
for C2 in l..N2 loop --set LYR2 init weights and

--thresholds to values within
--u width of 0

for Cl in 0..NI loop
uniform(u_center,uwidth,seed,W(2,C2,Cl));

end loop;
end loop;
for Cl in O..N2 loop --set LYR3 init weights and

--threshold to values within

C-22

--u width of 0
uniform(ucenter,uwidth,seed,W(3,l,Cl));

end loop;
end SETINITWTS;

procedure GETTSVALUES(NO,NBR TVS,NBRPVS: in positive;
X: in out TS VALUES;
X PRED: out TS VALUES) is

--Gets all time series values used from the input file
--GMCDATA and puts them in the array X. Those values
--which the network does not predict are also put into
--the array XPRED since the prediction process does
--initially use some actual time series values.

INFILE2: textio.file_type;
begin

open(INFILE2,in file,"GMCDATA");
for C1 in O..NO + NBR TVS + NBR PVS - 1 loop

get(INFILE2,X(Cl));
skipline(INFILE2);

end loop;
for Cl in O..NO + NBR TVS - 1 loop

X PRED(CI):= X(Cl);
end loop;
close(INFILE2);

end GETTSVALUES;

function NEURONOUTPUT(NO,Nl,N2,LAYER,NODE: in positive;
W: in WEIGHTTYPE;
I: in INPUT TYPE) return float is

--Computes the OUTPUT of the neuron at NODE in LAYER.

SUM:float:=O.O;
END OF LAYER:positive;
OUT PUT:float;
TEMP:float;

begin
if LAYER = 1 then

END OF LAYER:= NO;
elsif LAYER = 2 then

END OF LAYER:= Nl;
else

END OF LAYER:= N2;
end if;
for J in 1..ENDOFLAYER loop

TEMP:= W(LAYER,NODE,J) * I(LAYER,NODE,J);
SUM:= SUM + TEMP;

end loop;
OUT PUT:= 1.0/(1.0+exp(-SUM + W(LAYER,NODE,O)));
return OUTPUT;

end NEURONOUTPUT;

procedure COMPUTENETWORKOUTPUT(NO,Nl,N2: in positive;

C-23

NETIN: in
NETINPUTTYPE;3 W: in WEIGHT TYPE;

I: in out INPUT TYPE;
0: out OUTPUTTYPE) is

--Finds the output 0(3,1) of the network given a
--particular set of network inputs NETIN, and in the
--process also finds interconnecting inputs.

begin
--set first layer inputs
for C1 in l..N1 loop

for C2 in l..N0 loop
I(1,CI,C2):= NETIN(C2);

end loop;
end loop;
--find inputs to layer 2 nodes
for CI in I..N2 loop

for CJ in 1..Nl loop
I(2,CI,CJ):= NEURONOUTPUT(NO,Nl,N2,1,CJ,W,I);

end loop;
end loop;
--find inputs to layer 3 nodes
for CI in 1..N2 loop

I(3,1,CI):= NEURONOUTPUT(NO,Nl,N2,2,CI,W,I);
end loop;
--find network output
O(3,1):= NEURONOUTPUT(N0,Nl,N2,3,l,W,I);

end COMPUTENETWORK_OUTPUT;

end NETWORKPACKAGE;

C2

C-24

package NEURON PACKAGE is
--NEURON PACKAGE has only a specification part. It
--defines the ranges of the indices of the three neuron
--parameters as explained in the comments included in
--the main procedure JIMSPNET.

type WEIGHTTYPE is array(positive range <
positive range <
natural range <>, if float;

type OUTPUTTYPE is array(positive range <>,
positive range <>) of float;

type INPUTTYPE is array(positive range <>,
positive range <>,
positive range <>) of float;

end NEURONPACKAGE;

C-25

Appendix D: Additional Error Surface Descents

i Figures 3.11 through 3.14 in Section 3.4.1 depict the

performances of four weight updating algorithms. Each of

these depictions begins an error surface descent from the

- point (W1 W2) = (4,-3.5). This appendix shows the same four

algorithms descending from the initial points (4,-4) (in

Figures D.l through D.4) and (6,-8) (in Figures D.5 through

D.8). Inspection of these plots reveals the advantage of

the QSD algorithm (with batch processing, unless otherwise

noted) -faster convergence to lower final error values.

D

, D-I

I _: _1 _i l

Li-too -M - -401 -am sm axe 04M am Dow tM

Figure D.1 QSD Algorithm from (4,-4)

f-tee -111 -Ace -.400 -M eon CANe V401 G am LeID

'01

Figure D.2 Single-Step, Input-by-Input Updating from (4,-4)

D-2

-a. - MO -AN -.Me -A N oe ea40 am OMw LMr

Figure D. Snpngle-Stnp BapplcatiroeofsQSD from (4,-4)

D-

'-oham _D - .0 _ _ w GOD Da " 0 a" I0

'_100 -0 -N -0 -m a 20 am Dew Duem i

Figre .6Figr-ep .5tb u Updtin Algoith from,6,-B

I _ __ ___ _ ___ __D-4__

U rjf - _ 7_717-7 - .7 - -

.aaD -no -aO. -44 -00 *000 em cen 00m as" IM

Figure D.7 Input-by-Input Application of QSD from (6,-B)

-M _a _20 m _m -. 0 -a m 1000

Figure D.8 single-Step Batch Processing from (6,-8)

D-5

- - -. - .. ,. ' . . . : . :

Bibliography

Booch, Grady. Software Engineering with Ada. Menlo
Park CA: The Benjamin/Cummings Publishing Company,
1983.

Conte, S. D. and Carl de Boor. Elementary Numerical
Analysis: An Algorithmic Approach (Second Edition).

- New York: McGraw-Hill Book Company, 1972.

Dahl, Edward D. "Accelerated Learning Using the Generalized
Delta Rule," Proceedings of the IEEE International
Conference on Neural Networks. 2. 523-530. San Diego:
SOS Printing, 1987.

Farmer, J. Doyne. "Chaotic Attractors of an Infinite-
Dimensional Dynamical System," Physica D. 4: 366-393
(1982).

Farmer, J. Doyne and John J. Sidorowich. Exploiting Chaos
to Predict the Future and Reduce Noise, Version 1.1.
Report LA-UR-88-901. Los Alamos NM: Los Alamos
National Laboratory, February 1988.

Feynman, Richard P. The Character of Physical Law.
Cambridge, Mass.: M.I.T. Press, 1965.

Froehling, Harold and others. "On Determining the Dimension
of Chaotic Flows," Physica D. 3: 605-617 (1981).

Gleick, James. Chaos: Making a New Science. New York:
* Viking Penguin, 1988.

Grassberger, Peter and Itamar Procaccia. "Measuring the
Strangeness of Strange Attractors," Physica D, 9:
189-208 (1983).

Lapedes, Alan and Robert Farber. How Neural Nets Work,
preprint. Report LA-UR-88-418. Los Alamos NM: Los
Alamos National Laboratory, 1988a. Submitted to Proc.
of IEEE Conf. on Neural Info. Processing Systems.

Lapedes, Alan and Robert Farber. Nonlinear signal
Processing Using Neural Networks: Prediction and System
Modeling, preprint. Report LA-UR-87-2662. Los Alamos
NM: Los Alamos National Laboratory, 1988b. Submitted
to Biological Cybernetics.

Lippmann, Richard P. "An Introduction to Computing with
Neural Nets," IEEE ASSP Magazine: 4-22 (April 1987).

BIB-1

Mackey, Michael C. and Leon Glass. "Oscillation and Chaos
in Physiological Control Systems," Science. 197: 287-p 289 (15 July 1977).

Maybeck, Peter S. Class notes distributed in EENG768,
Computational Aspects of Modern Control, School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, Fall 1988.

Ruck, Capt Dennis W. Multisensor Target Detection and
Classification. MS thesis, AFIT/GE/ENG/87D-56. School
of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB Ohio, December 1987.

Tarr, Capt Gregory L. Dynamic Analysis of Feed Forward
Neural Netw6rks Using Simulated and Measured Data. MS
thesis, in preparation. School of Engineering, Air
Force Institute of Technology, Wright-Patterson AFB
Ohio, December 1988.

Thompson, J.M.T. and H.B. Stewart. Nonlinear Dynamics and
Chaos. Chichester, England: John Wiley and Sons, 1986.

BIB-2

VITA

Captain James R. Strightr

He graduated from " * school in Meadville,

Pennsylvania, and from Allegheny College in Meadville, where

he majored in mathematics. He joined the Air Force in 1983,

and earned a bachelor's degree in electrical engineering

from Gannon University in Erie, Pennsylvania in 1984.

Following graduation from OTS in August 1984, his first

assignment was to the National Computer Security Center at

Fort Meade, Maryland, where he served as the government team

leader for development of an encryption device. He entered

the School of Engineering, Air Force Institute of

Technology, in June 1987.

VIT-1I

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

I Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-08

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSI FIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFI T/GE/ENG/88D-50

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
I (If applicable) -School of EngineerinI AFIT/ENG

6c ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

Ba. NAME OF FUNDING/SPONSORING j Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION PADC (If applicable)

Sc ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification)

See Box 19

12. PERSONAL AUTHOR(S)
James R. Stright, B.E.E., Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1 S. PAGE COUNT
MS Thesis FROM TO 1988 December 120

16. SUPPLEMENTARY NOTATION

17. COSATI CODES IS. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Neural nets, Predictions, Time Series Analysis

06 04

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Titles A NEURAL NETIURK lITILIENTATIUN OF
CHAOTIC TIME SERIES PREDICTION

Thesis Chairmans Steven K. Rogers, Captain, USAF

Associate Professor of Electrical Engineering

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
E3UNCLASSIFIEDUNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. AME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
James R. Stright, Captain, USAF (513) 255-3030 AFIT/ENG

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

,I

19. Abstract

This thesis provides a description of how a neural network can be

trained to "learn" the order inherent in chaotic time series data and

then use that knowledge to predict future time series values. It

examines the meaning of chaotic time series data, and explores in

detail the Glass-Mackey nonlinear differential delay equation as a

typical source of such data. An efficient weight update algorithm is

derived, and its two-dimensional performance is examined graphically.

A predictor network which incorporates this algorithm is constructed

and used to predict chaotic data.

The network was able to predict chaotic data. Prediction was

more accurate for data having a low fractal dimension than for high-

dimensional data. Lengthy computer run times were found essential for

adequate network training.

